
 DIO-TV
 EXPERIMENTER

FE8RUARY-MARCH 75 C

ONE-EVENING PROJECTS - Antique 'Phone Radio

- Unitiversal AC Ammeter
- Perl-Board Phono Preamp

HOW BAD IS Highway HI-FI?

TEST REPORTS

International C-12B
Frequency Meter
Heathkit/Magnecord 1020 4-Track Stereo Recorder
Knight-kit Safari III Portable CB Transceiver

AM-RM stations WCRLD-WIDE sMoRT-wave tistincs!
-

Introducing EICO's Ne

Today's electro-technology makes possible near-perfect stereo at moderate manufacturing cost: that's the de sign concept behind the new EICO "Cortina" all solid state stereo components. All are 100% professional, conveniently compact ($31 / 8^{\prime \prime} \mathrm{H}, 12^{\prime \prime} \mathrm{W}, 8^{\prime \prime} \mathrm{D}$), in an esthetically striking "Iow silhouette." Yes, you can pay more for high quality stereo. But now there's no need to. The refinements will be marginal and probably inaudible. Each is $\$ 89.95 \mathrm{ktt}, \$ 119.95$ wired.

Model 3070 All-Silicon Solid-State 70 -Watt Stereo

"Cortina Serles"!
Amplifier: Distortionless, natural sound with unrestricted bass and perfect transient response (no interstage or output iransformers); complete input, filter and control faclities; failure-proof rugged all-silicon transistor circuitry.
Model 3200 Solid-State FM/MPX Automatic Stereo Tuner: Driftless, noiseless performance; $2.4 \mu \mathrm{~V}$ for 30 db quieting: RF, IF, MX are pre-wired and pretuned on printed circuit boards - you wire only non-critical power supply.

7 New Ways to make Electronics more Fun!

Save up to 50% with EICO Kits and Wired Equipment.

You hear alf the action-packed capitals of the world with the NEW EICO 71t "Space Ranger" 4 Band Short Wave Communicatlons Retelver plus ham operators, ship-to-shore, alrcraft, Coast Guard, and the full AM band. 550KC to 30MC in four bands. Selective, sensitive superhet, modern printed circuit board constructlon. Easy, -fast pinpoint tuning: Illuminated slide. rule dials, logging scale; "S" meter, electrica! SSB pread tuning, varlable BFO for CW and speaker Headphone jack Kit s99.95 Wi \$49.95. Wired $\$ 69.95$.

More "ham" for your dollar than ever - with the one and only $\$ \$ B / A M / C W \quad 3$ - Band Transceiver KIt, new Model 753 - "the best ham transcelver buy for 1966^{63} - Radlo TV Experi menter Magazine. 200 watts PEP on 80,40 and 20 meters. Receiver offset tuning, built in vox high Ievel dynamic ALC, sllicon solid-state VFO Unequaled performance, features and appear. ance. Sensationally priced at $\$ 189.95 \mathrm{klt}$ $\$ 299.95$ wired.

NEW EICO 888 Solid-State Engine Analyzer
Now you can tune-up, troubleshoot and test your own car or boat.
keep your car or boat engine in tip-top shape with this completely portable, self-contained, self. powered universal engine analyzer. Completely tests your total ignition/electrical system. The first time you use it - just to tune or peak performance - it'll have paid for itself. (No tune up charges, better gas consumption, longer wear) 7 instruments in one, the EICO 888 does all these for 6 V and 12 V systems; 4, 6 \& 8 cylinder engines.
The EICO 888 comes complete with a comprehensive Tune-up and Trouble-shooting Manual including RPM and Dwell angle for over 40 models of American and Foreign cars. The Model 888 is an outstanding value at $\$ 44.95$ kit, $\$ 59.95$ wired.

New EICOCRAFTO Easy: o-bulld solide-state elecronic Truxiesty great or beginners and sophisticates alike. As professional as the standard Eico line only the complexity is reduced to make kitowlor cost. Features pre-dillied copperplated etched printed circuit boards; finest parts; stepby-step instructions; no technital experience needed lust soldering Iron and pllers. Choose from: Fire Alarm; Intercom; Burglar Alarm; Ught Flasher; "Mystlfier"; Siren; Code Oscillator; Metronome; Tremo!o; Audio Power Ampllfier; AC Power Supply. From $\$ 2.50$ per kit.

There's more PUNCH in the new EICO "SentinelPro" 23-channel Duat conversion 5-watt CB Transcelver. New advanced Blg-Reach "Range Plus" circuitry lengthens "talk-power" reach Automatic noise Ifmiter super-sensitizes for weak signals. "Finger Tip" anlenna loading and transmitter funing controls. 23 crystai-controlled ransmit and recelve channels - all crysials supplied. Rear-illuminated S/RF meter. Transistorized 12VDC and 117 VAC dual power supply. Wired only, \$169.95. Positlve.Negalive Ground/ Moblle Marine Modiflcatlon Ilt (optional \$5.95).

Model 460 Wideband Dlrect-Coupled 5° Oscilsoscope. DC.4.5mc for color and E8W TV service and lab use. Pushpull OC vertical amp., bal. or unbal. indut. Antomatic sunc limiter and amp. $\$ 109.95$ kit, \$149.95 wired

FREE 1967 CATALOG RTVE-12

31-01 39 th Ave. Flushing $N . Y$ inc. 11352

Send me FREE catalog describing the full Eico line of 200 best buys, and name of nearest dealer. I'm inter

```
\(\square\) test equipment
stereo/hi.fi
\(\square\) ham radio
Citizens Band radio
```

\square automotive electronics
Name.
Address.
City
State
\qquad
$\square-\mathrm{CO}$

1

Model 232 Peak-to.Peak VTVM. A must for color or B8N TV and industrial use. 7 non-skip ranges on ald 4 functions. With exilusive Uni-Probe. $\$ 29.95 \mathrm{mth}$, $\$ 49.95$ wired.

Cast your ballot for a successtul future! 253 I.C.S.
 tion. You learn from experts. Di-

ACCOUNTING Accounting for Busidess Progrsmmers Aocounting (Coneds)
Auditing
Cost Accountin
C.P.A. Review

Estate é Trust Accounting
Executive Accountine
Federal Tax
General Accounting Industrial Accounting Junior Accounting Lefal Accounting
Ofico Accounting
Porsonal income Tax 8 Soclal Security Prectical Accoumpline public Accounting Small Businees Accountine Starting of Menaging s Smail Bookkeaping Service
ARCHITECTURE
AND BUILDING
Arch. Drawing e Dosign Architecturt
Building Contractor
Bulilidiag Estimator
Building Inspector
Bulidíng Maintonance
Carpenter-Builder
Carpentry a Millwark
Houte Planning e Interior Design
Painting Contractor
Paming Contractor
Reading Arch. Bivoprint
Reading Arch. Guoprints
Review in Arch. Design
Review of M in Buildings
ART
Amateur Artist
Commercial Art Commercial Cartoonin Ointerior Pachating for Pleasur Show Cord Sign Prod Show Card s.Sign Pros. Show Card Writing Sign Painting 8 Designing automotive
AUTOMOTIVE
Aulomatic Ir
Automobile Body Rebuilding 8 Refinishing
Automobile Electrical Tech Automobile Engine Tune-1
I.C.S. is the oldest, largest school of its kind. Over 200 courses for men and women. High school, business, secretarial, interior decorating, engineering. One for you. Direct, job-related. Bedrock facts and theory plus practiçal applica-

Automobile Technician Automobily Technician
Automotive Mechinic Oiesel-Gas Motor Vehicle Englnes

BUSINESS

Advertisine
Busic Inventory Contror Business Administration Business Mansgement \& Marketins
Businass Mansgement 8 Praduction Canadian Business Courses Condensed Business Condansed
Practice
Direct Mail \& Mail Order Adyertising Industrial Psychalogy Magazine © Newspaper Advertising Managing e Small Store Marketing
Marketing Research Modern Executive Mensgement Ofice Automation Office management Prasramming for Dicital Computers Programming the IBM 1401 Computar
Purchasing Atent Retail Business
Retsil B Local Adyertisung 2 Retail Merchandising Retail Selling Systems and Procedures Antys is
CHEMICAL
CHEMICAL
Analytical Chmmistry
Chemical Enginoering
Chemical Engin eer ing
Optrations
Chemical Laboratory Tech. Elements of Nuclear Enargy General Chemistry Instrumental Laboratory Analysis CIVIL ENGINEERING Civil Engineering Construction Engintering Highway Engineering Principles of Surveying Reading Highway Biueprint Sowage Plant Operato

Structural Engineering Surveying and Mapping Water Works Operator
DRAFTING Architectural Dratting Design Drafting Dratint Technology Eloctrical Drafting OraftIng Electronic Draftlon: Introductory mechanical Drafting
Machanical Drattine Prassure Vessel and Tank Print Reading Sheot Metal Layout for Air Conditioning Structural Draftin ELECTRICAL Electric Motor Repairman Electric Motor Repai Servicing
Electrical Contractor ectrical Engineerin (Power option or Electrical Enginetering Tech. Electrical Instrumant Tech. Industrial Electrical Tech. Power Line Design and Construction
Power Plant Operstor
(Hydre or Steam Option) Practical Elactricion Practical Lineman Resdine Electrical Biupprints
ENGINEEATNG Chemical Civil Electrical Mechanical Indusirial management for Engineers
ENGLISH AND WRITING Better Business Writin Free Lance writing Introductory Tech. Writing Modern Letter Writing Practical English Short Story Writin HIGH SCHOOL High School Business High School (Cinada) High School College Prep. (Arts)
High Schooi Collefe Prep. (Enginearing \& Science)
ploma to graduates.

Clip and mail the coupon now. You'll receive, absolutely FREE, 3 valuable booklets that have helped thousands. But don't delay. Cast your "ballot" for future success!

Hish School General High Schooi Mathomitles Migh School Secrotarial High School Vocational LANGUAGES (Edited by Berlitz) French German
italien
Spanish LEADERSHIP Basic Supervision Industrial foremanship Industrial Supervision Parsonality Development
Personnot-Labor Ralations MATHEMATICS Advanced Adathematic Mathematics and Mochanics for Engineerins Mathomstics snd Physics for Enginetring. Mathematics \& Physics for Technicians Modern Elementary Statistics
MECHANICRL Aircraft \& Power Plant Mochanic Industrial Engineerins Industrial Instrumentation Machine Design Mechanical Engineering Quality Control Safety Engineering Tech. Tool besiga
Value Anslysis
PETROLEUM Matural Gas Production : Transmission Oil Field Technololy Pelroleum Production Polroleum Production Engineering Petroliaum Refinary Oper. Pipoline Enginetring PLASTICS Plastics Technicion PLUMBING. HEATING, AIR CONDITIONING Air Conditioning Air Condilioning Maint. Domestic Heating with Oil \& Gas
Domestic Refrigeration Heating
Heatine \& Air Conditioning with Drawing

Industrisl Heatint Plumbing Plumbing a Heating Practical Plumbin! Rofrigeration Refrigeretion of Air Conditioning Steam Fitting PULP AND PAPER Paper Mechine Operstor Paper Mokine Pulp Mskine Pulp \& Paper Engineering Pulp \& Paper making SALESMANSHIP Creative Solosmsnship Real Estate Sslosmanship Sales Manezoment Salosmanship SECRETARIAL Clerk.TyDis Commercial Legel Secretary Mrofessional Seeretary Shorthend Stenofraphic Typowrating SHOP PRACTICE Drill Operator Foundry Practice Industriol Metaliurey Lathe Opafsto Machine Shop Inspection Machun Shop Practice Toolmaking. Metallurgical Enginterin Technoiasy molling Mechine Operator Multicraft Maintenance Mechanic
Practical Millwrighting Reading Shop Prints Rigsing
Tool Engineering Techn'gy Tool Grinder
Turrot Lathe Dperstor Turrat Lathe Dperstor
Welding Engineering Tech. STEAM AND DIESEL POWER Boiler Inspector Industrial Building Ensíneer Power Plent Engineering Stationary Diesel Engines Stationary Fireman
Stationary Steam Eng.

TEXTILES
Cardins
Carding and Spinnint
Oyaing 8 Finishint
Loom fizint Spinnins
Toxtile Dessening
Textile Technolory Torping and Weaving
TRAFFIC
Motor Traffic Managoment
Rainway Rata Clerk
Trafic Mantegemen
TV-RADIOELECTRONICS Electronic F undsmentets Electronic Fundamentals (Prostamed)
Elsetronic Fundamentats with Electr. Equip. Tr'n's Electronic Instrumentation婁 Serve Fundamentals Eiectronic Principles for Automation
Electronies and Applied
Csiculus
Electronics Technicign First Class Radiotelephon License
Fundementals of Electronic Computers
General EJectronics General Electronics with
Electronic Equip. Trn'
HI.Fi Sterme and Sound
Systerns Servicing
Industrial Electronic
Industrial Evetronica
Enginearing
Industrial Electronics
Engineerige Technicion
Practical Radio-TV Eng'r's Practical Telephony Principles of hadioElectronic Telemetry
Principles of Semicondsc-tor-Transistor Circuits
Radio Servicing with Equipment Training Radio \& TV Servicing
Radio \& TV Servicing with Equipment Training Second Class RadioteleDhone License
Sound Systems Specislist Talephony. Electronics and Radio Communication TV Receiver Servicing
TV Technician

Accredited Member,
National Home Study Council

IHTERNATIONAL CORRESPONDENCE SCHOOLS

[^0]Name of the course in which you are interested
Name (Peise indieste Mr. Miss Wrs.)
\qquad Herse micala urimise Nral An \qquad
\qquad Working Hours \qquad A.M. 10

RADIO-TV EXPERIMENTER

Cover photo by Leonard Heicklen

Feb.-March 1967 CONTENTS/INDEX

WHITE'S RADIO LOG, Vol. 47, No. 1—Page 93
DEPARTMENTS • Bookmark 6 - CB Cotumn 12 - New Products 15 - Ask Me Another 23 - Llterature Library 112

NOW THERE ARE 138 RADIO SHACKS COAST TO COAST!

ARIZONA - Phoenix ARKANSAS - Little Rock CALIFORNIA - Anaheim Bakersfield, Downey, Garden Grove, La Habra, Long Beach, Los Angeles, Mission Hills, Mountain View, Oakland, Reseda, Sacramento San Bruno, San Diego, San Francisco, Santa Ana, Santa Monica, Torrance, West Covina
COLORADO - Denver CONNECTICUT - Hamden, Manchester, New Britain, New Haven, New London, Orange, Stamford. West Hartford
FLORIDA - Orlando
GEORGIA - Atlanta
ILLINOIS - Chicago
KANSAS - Wichita
LOUISIANA - New Orleans
MAINE - Portland
MARYLAND - Langley Park
MASSACHUSETTS - Boston,
Braintree, Brockton, Brookline,
Cambridge, Dedham.
Framingham, Lowell, Medford,
Natick, Quincy, Saugus,
Springlield, Waltham, West
Springfield, Worcester
MICHIGAN - Detroit
MINNESOTA - Minneapolis, St. Paul
MISSOURI - Kansas City, St.
Joseph, St. Louis
NEBRASKA - Omaho
NEW HAMPSHIRE -
Manchester
NEW JERSEY- Pennsauken
NEW MEXICO - Albuquerque
NEW YORK - Albany,
Binghamton, Buffalo, New York, Schenectady. Syracuse OHIO - Cincinnati, Cleveland OKLAHOMA - Oklahoma City, Tulsa
OREGON - Portland
PENNSYLVANIA -
Philadelphia, Pittsburgh
RHODE ISLAND - Providence, East Providence
TENNESSEE - Chattanoogo. Memphis, Nashville
TEXAS - Abilene, Arlington, Austin, Brownsville, Corpus Christi, Dallas, Fort Worth. Houston, Lubbock Midland, San Antonio Sherman, Waco UTAH - Salt Lake City VIRGINIA - Arlington, Virginie Boach
WASHINGTON - Everett, Seattle

SC@TT

SCOTT'S NEW

 ONE-AFTERNOON TUNER KIT DELIVERS AMAZING FET PERFORMANCENow you can get factory-wired performance from a kit that takes only one afternoon to build! Scott's new LT-112B is the only kit with Field Effect Transistor circuitry*, enabling you to enjoy more stations more clearly. Interstation Muting Control effects complete quiet between FM stations . . . oscilloscope output allows laboratory-precise correction for multipath distortion.
"'Scott's LT-112 . . . is one of the finest FM stereo tuners we have tested and it is easily the best kit-built tuner we have checked . . . Because of its simple construction and trouble-free nature, it is a logical choice for anyone who wants the finest in FM reception at a most remark. able price." HiFi/Stereo Review.
LT-112B specifications: Usable sensitivity, $1.8{ }_{\mu} \mathrm{V}_{\text {C }}$ Cross modulation, 90 dB ; Stereo separation, 40 dB ; Capture ratio, 2.5 dB ; Price, $\$ 189.95$.
-Patents pendine
For complete information on the Scott LT-112B, send for your free copy of Scott's 16 -page full-color illustrated Guide to Custom Stereo.

Scott . . . where innovation is a tradition

Prices slightly higher wast of Rockies. Subjact to chames without motices.

RADIO-TV EXPERIMENTER

Dedicated to America's Electronica Erperimenters

JULIAN M. SIENKIEWIC2 WA2CQL/KMD4313	Editor
RICHARD A. FLANAGAN	Managing Fditor
ELMER C. CARLSON KOD1752	Technical Editor
HELEN PARKER	Editortal Ansistont
EUGENE F. LANDINO	Art Editor
ANTHONY MACCARRONE	Art Director
IRVING BERNSTEIN	Cover Art Director
BARBARA GABRIEL	Art Associate
JIM CAPPELLO	Advertisino Managor
LEONARD F. PINTO	Production Director
CARL BARTEE	Production Monoger
HELEN GOODSTEIN	Asaitant Production Mamager
DAVID COHN	Promotion Director
WILFRED M. BROWN	Kit hirition Manager
JOSEPH DAFFRON	Growp Execatire Editor

Proaldent and Pablisher
B. G. DAVIS

Brecutice Vice-President and Asaidont Publtoher JOEL DAVIS

Fice-Pretident and Editorial Director HERE LEAVY, KMD4529

RADIO.TV EXPERIMENTER, Val. 22, No. I is published blmonthly by SCIENCE \& MECHANICS PUBLISHING CO., a subsidiary of Davis Publications, Inc. Ediforial, business and subscription offices: 505 Pork Ave., New York, N.Y. 10022 . One-year subscription islx issuesl$\$ 4.00$; two-year subscription 112 issues) - $\$ 7.00$; and three.year subscription 118 issues) $\$ 10.00$. Add $\$ 1.00$ per year for postage outside the U.S.A. and Canada. Advertising offices: New York, 505 Pork Ave., PL-2.6200; Chicago: 520 N . Michigan Ave., 527.0330; los Angeles: 1709 W. 8th St. $213.483-5317$; Atlanta: Pirnie \& Brown, 3108 Piedimont Rd., N.E., 404.233 .6729 ; Long Island: Len Osten, 9 Garden Street, Great Neck, N.Y., 516.487.3305; Southwestern odvertising representative: Jim Wright, 4 N. Eight St., St. Louis, CH 1-1965.

EDITORIAL CONTRIBUTIONS must be accompanied by return postage and will be handed with reasonable care; however, publisher assumes no responsibility for return or safery of manuscripts, ort work, or photographs. All contributions should be addressed to the Editor, Rodio-TV Experimenter, 505 Pork Avenue, New York, Now York 10022

Second class postage paid at New York, New York and at additional malling office. Copyright 1966 by Sclence and Mechanics Publishing Co.

$\mathrm{c}_{\text {OROLE }} \mathrm{SHOPPING}$ MART
 UNUSUAL VALUES

A selection of products available by mail for readers of Radio-TV Experimenter All merchandise sold on a maney-back guarantee. Order Direct by Stock No. Send theck or M.O.

3" ASTRONOMICAL TELESCOPE

See stars, moon, phoses of Venus, planets close up. 60 to 180 power-fomous Mi. Palomar reflecting type. Aluminized \& overcoated 3^{3} diameter $\$ / 10$ primary mirror. ventitated cell. Equipped with 60 X eyepiece and mounted $3 X$ finder scope, hardwood tripod. FREE: "STAR CHART"; 272-page "HANDBOOK OF HEAVENS"; "HOW TO USE YOUR TELESCOPE" book. \$29.95 Ppd. Order Stock No. $85,050 \mathrm{HP}$. Edmund Scientifie Co., Barrington, N.J. 08007.

ASIRONOMICAL TELESCOPE KITS

Grind your own mirror for powerful telescope. Kit contoins fine anneoled pyrex mirror blank, tool, abrasives, diagonal mirror, and eyepiece lenses. You build instruments valued from $\$ 75.00$ up.

alved Stock	Di		
,003HP	41	$1 / 4$	\$8.00 Ppd.
70,004HP	6	1	12.95 Ppd.
70,005	$8{ }^{\prime \prime}$	$13 /$	21.00 Ppd
70,006 HP	$10^{\prime \prime}$	$13 /$	34.25 \% 0
70,007 HP	121/2	21	65.85

SPACE-AGE NICKEL CADMIUM BATIERIES

Guaranteed rechargeable for 5 years. Use in Mashlights, partable radios, toy or flash guns. Obsolete all others! Low-cost kit includes compact, highly efficient charger and 2 " D " size Ni -Cd batteries. Power andput remoins constant 1 or 2 " D " or "C." size batteries charge in 16 hrs. $\$ 9.95$ Ppd. Order Stock No. 60,591 MP. Charger only. $\$ 5.98$. Stock No. $60,592 \mathrm{HP}$. Two "D" cells only. $\$ 5.98$ No. $60,593 \mathrm{HP}$. Edmund Scientifc Co., Barrington, New Jersey 08007.

"FISH" WIrH A MAGNET

Go treasure hunting on the bottoml Fascinating fun 8 sometimes profitablel Tie o line to our $5-\mathrm{lb}$. Magnel-drop it overboard in bay, river, lake or ocean. Troll it along bottom-your "treasure" haul can be outboard motors, anchors, other metal valuobles. $5-1 \mathrm{l}$. Magnet is wor surplus-Alnico \checkmark Type-Gov't cost $\$ 50$. Lifts over 150 lbs. on land-mueh greoter weights under water, $\$ 12.50$ Ppd. Order Stock $170,571 \mathrm{HP}$. Edmund Scientific, Barrington. N.J. 08007.

COLLIMATOR-PARALLEL LIGHT SOURCE

Terrific bargain! Surplus gun sight arig. cost Gov't. about $\$ 100$. Was essentially a source of infinite light. Many uses for experimentors, reseorch labs. Metal ring and dot reticle $1 / 2.5,2^{\text {" }}$ ochromatic lens, bulb $33 /{ }^{\prime \prime} \times 25 / 6^{\prime \prime}$ reflector glass plate. Bulb operotes on 14 V , con be converted to 110 V -or inexpensive transformer available. $63 / 4^{\circ} \times 5^{\circ} \times 23 / 4^{\text {" }}$. $\$ 9.95$ Ppd. Order $\$ 70,774 \mathrm{HP}$. I 10 V tronsformer, $\$ 3.75 \mathrm{Ppd}$. $60,521 \mathrm{HP}$. Edmund Scientific Company, Barrington, New Jersey 08007.

GIANT SURPLUS BALLOONS

"Balls of fun" for kids, traffic stoppers tor stores, terrific for amateur meteoralogists. Create a neighborhood sensation. Great backyard fun. Exciting beach attraction. Amoteur meteorologists use to measure cloud heights, wind speed, and temp. Made of heavy black rubber. Inflate with vacuum cleaner or auto air hose, or locally ovailcleaner orf tor high rise, 8° diam $\$ 200$ Ppd. Order Stock No. 60,568MP. Edmund Scientific Co., Barrington, NJ. 08007.

NEW BINOCULAR-TO-CAMERA HOLDER
Fits any camera for exciting telephota pictures. $35-\mathrm{mm}$ camera with 7×50 binocular brings distant objects 7 times nearer. Ideal for long-range photos of wild life, ships, people, plones, etc. Artaches easily. Use any binocular or monocular-and camerastill or movie, color ar black \& white. Gray crinkle and bright chrome finish. 10^{*} long. Full directions. $\$ 11.50$ ppd. Order stock Na. $70,223 \mathrm{HP}$. Edmund Scientific Co. Borrington, N.J. 08007.

NEW MODEL DIGITAL COMPUTER

Solve problems, tell fortunes, play games with miniature version of giant electronic broins! Adds, subtracts, multiplies, shifs, complemen!s, carries, memorizes. Colored plastic parts easily ossembled. $122^{\prime \prime} \times 31 / 2^{\circ}$ $\times 43 / 4$. Incl. step-by-step assembly diagroms, 32-p. instruction book covering operotion, computer language (binary system) progromming, problems \& 15 experiments. $\$ 5.98$ Ppd. Order stock $170,683 \mathrm{HP}$. Ed mind Seientific Co., Barrington, N.J. 08007.

GIANI free Catalog

Completely new 1967 Catalog. 148 pages pocked with nearly 4,000 unusual bargains. Exciting new cotegories. Many new items. 100's of charts, illustrations. Many hard-10-0et war surplus bargains. Enarmous selection of telescopes, microscopes, binoculars, magnets, magniflers, prisms, photo components, etc. For hobbyists, experimenters, warkshops, factories. Shop by mail. No. solesman will call. Write for Catalog "HP" to Edmund Scientifc Co., Barrington, N.J.

STEP UP YOUR INCOME

Learn at Home to Fix Electrical APPLIANCES

If you have a business or job in Radio.TV Servicing or other home service, you'll find Electrical Appli. ance Repair a natural, profitable addition. NRI trains you quickly in spare time, shows you how to add to your income long before you finish training. NRI gives you parts to build your own Appliance Tester. Learn how to repair small and large appliances plus air conditioning, refrigeration, small gasoline engines, equipment used on farms and commercially. Cash in on this money-making side. line. Mail coupon for catalog. No obligation. NATIONAL RADIO INSTITUTE, Appliance Div., Wash. ington, D.C. 20016

\square FET'S "N" CHANNEL
TRANSISTORS 1 for $\$ 1.2$ for 1.01
20W NPN SIL. 2N1647 1 for $\$ 1.2$ for 1.01 CLIP-IN DIODES RECT. 15 for $\$ 1$ ' 30 for 1.01 ZENER RECTIFIERSS 12 for $\$ 124 \mathrm{for} 1.0$ GERMANIUM DIODES .. 25 for $\$ 150$ for 1.0 POWER RESISTORS . . . 20 for $\$ 140$ for 101 TRANSISTORS 30 for $\$ 160$ for 1.01 10.WATT ZENER 30V.... 1 for $\$ 12$ for 1.01 2N1613 100MC TRANS ... 2 for $\$ 1$ for 1.01 4W PLANARS 2N497.98 .. 2 for 81 for 1.01 300 MC. 2N706; NPN. . 2 for $\$ 1$ for 1.01 MICRODIODES EECTFS 60 for $\$ 1100$ for 1.01
IGNITION SWIG TRANS 1 for $\$ 12$ for 1.01 IGNITION SWTG TRANS 1 for $\$ 1$
10 for 1.01 10-WATT TRANSISTORS 3 for $\$ 16$ for 1.01 DISC CONDENSERS 30 for $\$ 160$ for 1.01 40WATT TRANSISTORS 2 for $\$ 1$ ifor 1.01 2 AMP RECTIFIERS 8 for $\$ 116$ for 1.01 PRECISION RESISTORS . 30 for $\$ 160$ for 1.01 SILICON RECTIFIERS . . 25 for $\$ 150$ for 1.01 GENERAL ELECTRIC DC MICROAMMETER
$0-100 \mu \mathrm{a}$ DĆ 2 SQUARE
 1.95

IRRROR and IFNS SET	
TERMS: include posioge, DCATALOG 10 e $\$ 2.00$ min. orde	
	P.O. BOX 942 X . IYNNFIELD, MASS

Color TV. The vast growth of color television activity has developed a pressing need for simplified, more useful color-TV troubleshooting guidance. Color-TV Servicing Guide, by Robert G. Middleton, is a quick, effective servicing tool. arranged by color-TV trouble symptoms. It shows how to apply proper troubleshooting procedures, based on an analysis of trouble symptoms. It includes many full-color illustrations of actual picture tube displays for the various troubles, plus clear, concise text explaining possible causes and diagnosing procedures.

Soft cover
112 pages $\$ 3.95$

The book goes through each section of the color-TV receiver, describing the symptoms of related troubles. The last chapter in the book explains in detail how to test and troubleshoot with color-bar generators. Without this helpful book at hand, many servicemen may be wasting time needlessly. It is written in a clear, concise manner by author Bob Middleton who is wellknown for his down-to-earth books for practicing techniques. Color-TV Servicing Guide is available from electronic parts distributors and bookstores throughout the country, or from Howard W. Sams \& Co., Inc., Dept. RTV, Indianapolis, Indiana 46206.
$\square \square$ Data Book. The fifth edition of the highly popular reference book Allied Electronics Data Handbook has been revised and enlarged to include new and up-dated material for use in electronics. Fundamental mathematical data covers math constants, math symbols and algebraic formulas. Complete mathematical tables are given for squares, cubes, square roots, cube roots, reciprocals, common logarithms, natural sines, cosines and tangents. Radio and electronic formulas are provided for 70 -volt speaker matching systems, resistance, capacitance, in-

How to get into one of today's hottest money-making fields-servicing 2-way radios!

More than 5 million two-way transmilters have skyrocketed the demand for service men and field, system, and R\&D engineers. Topnotch licensed experts can earn $\$ 12,000$ a year or more. You can be your own boss, bulld your own company. And you don't need a college education to break in.

H°ow would you like to start collecting your share of the big money being made in electronics today? To start earning $\$ 5$ to $\$ 7$ an hour... $\$ 200$ to $\$ 300$ a week... $\$ 10,000$ to $\$ 15,000$ a year?

Your best bet today, especially if you don't have a college education, is probably in the field of two-way radio.

Two-way radio is booming. Today there are more than five million twoway transmitters for police cars, fire trucks, taxis, planes, etc. and Citizen's Band uses-and the number is growing at the rate of 80,000 new transmitters per month.

This wildfire boom presents a solid gold opportunity for trained two-way radio service experts. Most of them are earning $\$ 5,000$ to $\$ 10,000$ a year more than the average radio-TV repair man.

Why You'll Earn Top Pay

One reason is that the U.S. doesn't permit anyone to service two-way radio systems unless he is licensed by the Federal Communications Commission. And there simply aren't enough licensed electronics experts to go around.
Another reason two-way radio men earn so much more than radio-TV service men is that they are needed more often and more desperately. A home radio or TV set needs repair only occasionally, and there's no real emergency when it does. But a twoway radio user must keep those transmitters operating at all times, and must have them checked at regular intervals by licensed personnel to meet FCC requirements.

This means that the available licensed experts can "write their own ticket" when it comes to earnings. Some work by the hour and usually charge at least $\$ 5.00$ per hour, $\$ 7.50$ on evenings and Sundays, plus travel expenses. Others charge each customer a monthly retainer fee, such as $\$ 20$ a month for a base station and $\$ 7.50$ for each mobile station. A survey showed that one man can easily maintain at least 15 base stations and 85 mobiles. This would add up to at least $\$ 12,000$ a year.

Be Your Own Boss

There are other advantages too. You can become your own boss-work by yourself or gradually build your own fully staffed service company. Instead
of being chained to a workbench, machine or desk, you'll move around, see lots of action, rub shoulders with important police and fire officials and business executives who depend on two-way radio for their daily operations. You may even be tapped for a big job working for one of the twoway radio manufacturers in field service, factory quality control, or laboratory research and development.

How To Get Started

How do you break into the ranks of the big-money earners in two-way radio? This is probably the best way: 1. Without quitting your present job, learn enough about electronics fundamentals to pass the Government FCC Exam and get your Commercial FCC License.
2. Then get a job in a two-way radio service shop and "learn the ropes" of the business.
3. As soon as you've earned a reputation as an expert, there are several ways you can go. You can move out and start signing up and servicing your own customers. You might become a franchised service representative of a big manufacturer and then start getting into two-way radio sales, where one sales contract might net you $\$ 5,000$. Or you may be invited to move up into a high-prestige salaried job with one of the major manufacturers.

The first step-mastering the fundamentals of electronics in your spare
time and getting your FCC Licensecan be easier than you think.

Cleveland Institute of Electronics has been successfully teaching electronics by mail for over thirty years. Right at home, in your spare time, you learn electronics step by step. Our AUTO-PROGRAMMEDTM lessons and coaching by expert instructors make everything clear and easy, even for men who thought they were "poor learners." You'll learn not only the fundamentals that apply to all electronics design and servicing, but also the specific procedures for installing, troubleshooting, and maintaining two-way mobile equipment.

Get Your FCC License... or Your Money Back!

By the time you've finished your CIE course, you'll be able to pass the FCC License Exam with ease. Better than nine out of ten CIE-trained men pass the FCC Exam the first time they try, even though two out of three nonCIE men fail. This startling record of achievement makes possible the CIE Warranty: you'll pass the FCC Exam upon completion of your course or your tuition will be refunded in full.

Before Ed Dulaney studied with CIE, he was a crop duster. Today he owns the Dulaney Communications Service, with seven people working for him repairing and manufacturing two-way equipment. Says Dulaney: "I found the CIE training thorough and the lessons easy to understand. No question about it-the CIE course was the best investment I ever made."

Find out more about how to get ahead in all fields of electronics, including two-way radio. Mail coupon for two FREE books, "How To Succeed In Electronics"' and "How To Get A Commercial FCC License."

$\mathrm{m}_{8}^{\text {Cleveland Institute of Electronics }}$ 1776 E. 17 th St., Oept. EX-18 Cleveland, Ohio 44114

ENROLL

UNDER NEW
G.I. BILL

All CIE courses are available under the new G.I. Bill. If you served on active duty since January 31, 1955, or are in service now, check box in coupon for G.I. Bill information.

A Real Charmer. No, the Cobra V isn't some kind of late model snake, it's a glitzy new CB rig which just blew on the scene from the windy city. The Cobra is right in step with the latest trends in CB gear-little in size, all transistorized, low cost, efficient; and it claims to be the first rig on the market with a "special protective circuit for transmitter components."

In the performance department, the Cobra V has transistorized transmit/receive switching (that means no moving parts and therefore less chance for mechanical failure when a tired old relay drops dead of fatigue). There's also a clever new voltage filter to improve the clarity of the signals inhaled by the Cobra V.

B\&K Cobra V CB Transceiver
Running a whopping 100% modulated 5 -watt input on any five channels, the set puts up quite a showy front with a walnut grain finish ('neath that frilly walnut finish is an all steel housing).

For those wise guys out there in the reading audience who come on strong with the fancy
tech talk, we note that the Cobra V comes on strong with better than half a microvolt sensitivity (for $10 \mathrm{dbS} / \mathrm{N}$) and a selectivity of 6 db at $\pm 3 \mathrm{kc}-$ O.K.?

You can get enough literature on the Cobra V to stuff a megacycle if you drop a card or letter to the manufacturer, B\&K Division, Dynascan Corp., 1801 West Belle Plaine Ave., Chicago, Ill. 60613.

A' Matchless Antenna? We've seen some wild looking things connected to the output of CB rigs but the Antenna Specialists MACH III makes the rest of them look like as tame as a tranquilized bunny rabbit.

Not knowing exactly how to describe it, the best we can do is simply parrot the description of the thing as stated by the manufacturer: "A spiral shaped, printed-circuit coil, waterproofed and shock-suspended inside a wing-shaped ornamental base." This all boils down to the fact that this circuitry is a "involute transducer" (wha?).

Now that the engineering is clear to you (because it certainly isn't to us) we can get into the performance of the little devil. It's a 32 inch steel whip, basically, set into a futuristic cyco-lac plastic base containing all of the sophisticated jazz we just told you about (don't ask us to repeat it please).

Available in a variety of mounting types (with or without shock spring), the MACH III is DC grounded for optimum SWR across the band. The antenna may be peaked up to your particular rig by means of an adjustment in the base.

Prices (depending on mounting hardware) range from $\$ 12$ to $\$ 25$. The folks who figured this one out are at Antenna Specialists, 12435 Euclid Avenue, Cleveland, Ohio 44106.

HOWARD W. SAMS BOOKS Current Bestsellers for Everyone in Electronics

Computers Self-Taughi Through Experiments. Clearly explains the basic circuits used in computers and demonstrates the fundamentals of computer principles and operation through 28 simple, lowcost construction projects. CER-1
. $\$ 4.25$
Building Your Amateur Radio Novice Station. Provides complete, easy-tofollow construction details for building an inexpensive transmitter and receiver, plus several accessory items. ASP-1.
.$\$ 3.50$
Short-Wave Listener's Guide. 2nd Ed. Gives listings for over 300 shortwave stations by country, call letters, frequency, power, and broadcast time. Invaluable for the shortwave fan. SLG-2
. $\$ 1.75$
99 Ways to Improve Your CB Radio. Provides invaluable tips on how to operate, service, and maintain CB radio equipment to achieve optimum performance. ICB-1 . . . $\$ 2.50$

How to Build Speaker Enclosures. Provides a wealth of both practical and theoretical information for constructing high-performance speaker enclosures for music systems. SEB-1
$\$ 3.25$
Understanding Telemetry Circuits. Clearly explains the four basic telemetry systems in current use. Explains how they are used in space and research to monitor and record remote conditions. UTL-I . . . \$3.25

101 Questions \& Answers About Transistors. Provides through pertinent questions and answers, a basic understanding of transistor theory and applications. QTS-1 \$2.50

Electronics in Oceanography. A full description of modern electronic systems and the basic instrumentation used for gathering, measuring, and interpreting oceanographic data. EOL-1.

101 Ways to Use Your Color-TV Test Equipment. 2nd Ed. Explains practical application of test equipment to diagnose color-TV troubles. Describes setup, proper test procedures, how to evaluate results. TEM-9A
$\$ 2.95$
101 Ways to Use Your Oscilloscope. 2nd Ed. Provides latest information on the proper use of the oscilloscope for faster and better electronics servicing. TEM-2A.... $\$ 2.95$
PHOTOFACTO Guide to TV Troubles. 2nd Ed. Photos of actual TV picture defects indicate where to find the trouble source in minutes.
PFG-2.
$\$ 3.95$

Tube Substitution Handbook. Pth td. Includes hundreds of new substitutions; lists over 11,500 direct substitutions. Includes substitutions for receiving, picture tube, subminiature, industrial, and communications types. TUB-9.... $\$ 1.50$
Color TV Servicing Made Eay. Full explanation of color principles, circuitry, setup adjustments, and servicing of color TV sets. Takes the mystery out of servicing color TV. CSL-1
. $\$ 3.25$
Tape Recorders-Now They Work. New 2nd edition. Fully explains principles of magnetic recording, various types of recorders, mechanisms and components, testing procedures, etc. Best reference on the subject. TRW-2 .
.$\$ 3.95$
How to Read Schematic Diagrams. Not only shows you how to read and interpret diagrams, but analyzes each component, its construction, and its circuit purpose and use. RSD-1
. $\$ 2.25$

Second-Cless Rudiotelephone License Mandbook. New 3rd edition; complete study course for elements I, II and III of the latest FCC exams. Helps you earn the license you need for two-way radio work. QAN-2
.$\$ 4.75$
Color TV Training Manual, 2nd Ed. Best guide for technicians preparing to service color TV. Detailed explanation of color principles, circuits, setup procedures, alignment, and troubleshooting; full-color illustrations. TVC-2 $\$ 5.95$
101 Ways to Use Your VOM a VTVM. Shows you how to get the most from these popular instruments, how to make required connections, how to test properly, how to evaluate results. TEM-3A. . $\$ 2.95$ Ciflzens Band Radio Handbook. New enlarged edition. Covers latest CB equipment and circuits, antenna systems, fixed and mobile installations, maintenance and repairs, FCC rules, etc. CBH-2 . $\$ 3.50$

Computer Dictionery. Defines over 5000 terms and concepts. Valuable appendices include information on computer systems, applications, COBOL, FORTRAN, ALGOL, QUIKTRAN, etc. CDS-1 (soffbound).. \$4.95 CDH-1 (hardbound) $\$ 6.95$
Color TV Trouble Clues. Vol. 2. Field-tested guide to procedures for fast color TV receiver repair. Describes symptoms, troubleshooting techniques, proper use of test ingtruments. COL-2 $\$ 1.95$
ABC's of Lasers and Masers. 2nd Ed. Clearly explains the operation and applications of the laser, the amazing device which produces light radiations capable of performing astounding feats. LAL-2. . . . $\$ 2.25$

Handbook of Electronic Tables k formulas. New enlarged 2nd edition. Complete reference for all charts, math tables, formulas and laws, symbols, constants, and standards. Special color insert shows latest FCC frequency spectrum assignments. HTF-2 $\$ 3.95$
ABC's of Computers. Explains in simple terms how computers work and what they do. Covers analog and digital types; describes circuitry, memory devices, programming, etc. ABC-2 \qquad . . $\$ 2.50$ Transistor Radio Servicing Made Easy. 2nd Ed. The authoritative book on fast, accurate repair of transistor radios. Includes new FM models. TRE-2.
.$\$ 2.95$

The affordable answer to an easy-to-use, top performing surveillance camera. Hundreds of uses in home, store, plant, office, hospital, school. Connects instantly to any TV set. Gives excellent picture with light under normal room lighting. Operates up to six sets. Complete - nothing else to buy. Optional lenses and tripod available.

All parts guaranteed one year. Vidicon guaranteed 90 days. Make check or money order to CONAR. Shipped REA collect.

SEND FOR FREE CONAR CATALOG

P

Gef Your F. C. C. LICENSE and A. S. E. E. DEGREE

Move up. Make more money. Enjoy greater security. How? By having the knowledge, skills, and documents that industry needs and pays for. Granthain can train you-can prepare you for a successful career in electronics. Among the courses we offer are:
(1) F.C.C. License Preparation (for first class Government license in communications electronics).
(2) Electronics Engincering Technology (leading to the Associate in Science in Electronics Engineering degree).
(3) Radio \& Television Servicing (training you to be an expert radio-TV serviceman). All of our courses are available in resident classes. and some of them are available also by correspondence. We are approved to offer training under the new G.I. Bill-both in resident classes and by correspondence.

Write or phone any one of our locations iisted below for free details. Specify the course you are interested in.

Grantham School of Electronics
 Dept. R-6

1505 N. Western Ave., Hollywood, Cal. 90027
(Phone: HO 9-7878)
408 Marion Street, Seattie, Wash. 98104
(Phone: MA 2-7227)
818-18th St., NW, Washington, D.C. 20006 (Phone: 298-1460)

Palm Sized Yakker. Palm sized can mean the size of a palm tree, but in this case it's a miniature radio station offering 2 channel operation, superheterodyne receiving, push-pull audio, 9 transistor function circuitry, and it's all wrapped up under a $\$ 14.95$ price tag.

This rig is called the Lafayette HA-62, transmitting in all its tiny glory from a die-cast chrome highlighted front panel via a telescoping whip antenna. Put in a 9 volt battery and you can plug in
 an earphone and make like Jack Daniel's (or James Bond, or whatever that fellow's name is). Signals from the HA-62 will carry for a mile or two under normal conditions, and no license is required (and no age limit either).

One Of Our Aircraft Is Missing. Not long ago we suggested that walkie-talkie users might make good use of the Class C radio control channels which lie between the Class D CB channelsthereby avoiding harmful interference from their more powerful 5-watt brothers. Unfortunately we forgot to consider the possible effects on the radio controlled aircraft using these channels. A number of model fliers quickly brought this to our attention-mentioning several instances when a walkie-talkie became the instrument of destruction to a prized model aircraft; knocked it right out of the sky.

The aircraft folks will be moving to their new 70 MHz mc channels and perhaps we might hold off on invading their 27 MHz channels until they're all moved out.

Retractable Slide Rule
Very-small-pocket-gized ($13 / 4 \times 13 / 4 \times 1 \mathrm{in}$.), this pocket slide rule extends to ten inches. The slide rule features A, B, C, and D scales with B and C scales folded in $D^{\prime \prime}$ pi and D pi relationship to permit determination of circular areas and circumference by moving cursor only. Double-length sliding

B and C scales provide an endless feature formerly found on circular slide rules. Reverse side measures to 20 in . or its metric equivalent and lists basic equivalents, fan laws, power, trig and geometric formulas. Cost. \$8.50; manufacturer, CalTape, 1095 Kingston Park, Roann, Ind. 46974.

5-Band CB Receiver/Direction Finder

This tranaistor portable tunes all 23 CB channels on two separate bands, as well as police/marine/ shortwave band, 1.5-4.5 MHz: low frequency beacon/weather band, $200-400 \mathrm{kHz}$: standard $\AA \mathrm{M}$ broadcast band. The "Nova CB" has an accurately calibrated rotating antenna and null meter, and is also a precision radio direction finder for boats and light planes: Priced at $\$ 149.95$, Nova CB comes with leather carrying case, chrome mounting brackets, 3 telescoping whip antennas, batteries,

MEMFROM
Knight-KIE:
Taut-Band VOM

- Highly Dependable, Rugged Taut-8and Meter Movement Assures Repeat-ability of Readings
- Total of 55 Ranges... Starts as low as .8 VDC Full Scale for Accurate Transistor Work
- Burnout Proof Movement-No Damage to Movement Possible, Even with 1000 Times Overload

- Mirrored Scale and Knife-Edged Pointer Eliminate Parallax ErrorsWith Test
Leods ond
Bottories $\$ 3095$ Assures Accurate Readings
Here in an easy-to-build kit, at a surprisingly-low price, is a 20,000 ohms-per-volt VOM with a burnout-proof movement.
Covers 55 ranges for reading AC and DC volts, resistance, DC current, decibels-with a switch that virtually doubles the ranges. The perfect instrument for testing radio and TV sets, hi-fi components, appliances, motors, house wiring, etc. Compact $63 / 4 \times 51 / 4 \times 33 / /^{n}$ unit. Complete with batteries, test leads, assembly manual for only $\$ 39.95$. And backed by this unique money-back guarantee . . . exclusive in the industry:

Rush coupon today for full details and Special Introductory Offer.

ALLIED RADIO, Knight-Kif Div.

Dept. 2018, P.O. Box 4398, Chicego, ill. 60630
Please rush full detail and Special Introductory
Offer on the new Knight-Kit Taut-Band VOM.

Name
PLEASE PRINT
Address
City \qquad

New Products

headphone jacks, miniature earpiece, pushbutton dial light, external power cord, house current adapter. Available at most stores or from NovaTech, Inc., 630 Meyer Lane, Redondo Beach, Calif.

Bass Guitar Speaker Systems

These speakers, PMC-1 and PMC-2, have been engineered to obtain maximum performance from bass guitar amplifiers. The 12 -inch speakers have 2 -inch diameter voice coils and 2 -pound magnets. Both systems are about the size of a 2 -suiter suitcase. The PMC-1 ($\$ 166.50$) has a 12 -inch wooter and handles 60 watts; the PMC-2 (\$216.50) has two 12 -inch woofers and handles 120 watts. Speakers made by Utah Electronics, 1124 E. Franklin St., Huntington, Ind.

For Hams What Am

The DR-30 Communications Receiver is a solidstate, dual conversion superhet unit using fieldeffect transistors. The use of FET's in the RF stages make for greater sensitivity, better image rejection and exceptional freedom from cross-modulation or overloading on strong signals. All the circuitry is on 9 plug-in, glass epoxy modules; chassis is $3 / 16$. inch thick aluminum. Complete ham-band coverage, 80 through 10 meters plus a portion of six meters; 9.5-10.5 MHz for WWV and 31-meter SWL

band plus provision for two optional crystals for additional frequency coverage. Selectivity positions 5.0, 2.1 and 0.5 kHz . Collins mechanical filter for SSB, operates on 12 VDC. Priced at $\$ 389.50$ amateur net from Davco Electronics, Inc., PO Box 2677. Tallahassee. Fla. 32304.

Updated Second Op

Coincident with a rapid increase in goed band conditions on most shortwave frequencies comes the revised, fourth edition of W91OP's Second Op. This is a simple DX computer on laminated card stock, giving beam headings to every country in the world from major geographic locations in the United States, immediate identification of prefixes including specific location of the prefix, time zone, continent, postage rates. Included on the periphery of the Second Op are provisions for logging contacts and receipt of confirmation. Send your name and address and $\$ 1.00$ to Electro-Voice, Inc., Dept. PR-4, Buchanan, Mich. 49107 (or visit youz local Electro-Voice distributor).

2-New Receivers-2

Both these new Hallicrafters receivers are AM/ FM. The FM-66, shown on the right, has a handrubbed walnut cabinet, two built-in antennas, printed circuit chassis, and a 5 -inch permanent

magnet speaker. It measures $14 \frac{1 / 2}{} \times 7^{1 / 2} \times 5 \frac{1}{4}$ inches, list price is $\$ 64.95$.

And on the left. Model S. 210 has 4 short wave bands as well as $A M$ and FM. This one has "spread" tuning, accomplíshed by electronically spreading apart distant stations to relieve conges. tion. permitting highly selective tuning on 49. 31. 25 and 19 meters. Power supply is the same as the FM-66-105-120 volt, 60 Hz AC. Has 3 dualpurpose and 3 single-purpose tubes. The vinylcovered metal cabinet is $14 \frac{1}{2} \times 7 \frac{1}{2} \times 53 / 4$ inches, and the unit lists for $\$ 89.95$. If you don't have a Hallicrafters distributor near you, their address is Hallicrafters Co., 4401 W. 5ih Ave., Chicago. Ill. 60624.

Lit-Up Base Antenna

The "Speakin' Beacon" Citizens Band base station antenna is a 27 MHz omnidirectional coaxial antenna with a permanent-circuit neon light built into its tip. Whenever the transmitter is keyed, the neon tube glows, visually verifying the RF power output and acting as a beacon to help quide mobiles. A Stati-Light ball surrounding the neon tube dissipates static electricity and helps eliminate
 noise. The ball. part of the neon light circuitry, provides proper capacity to ground to generate necessary voltage ta light neon when RF energy is present. The Speakin' Beacon is 19 feet, 3 inches. aluminum, built to withstand winds up to 80 mph . has its own built-in lightning protection. and can be installed anywhere a vertical pipe would lit. Gamma matched. it has exceptionally low VSWR. Model is M-148, CB net price is $\$ 29.95$. source is The Antenna Specialists Co., 12345 Euclid Ave., Cleveland. Ohio 44106.

Switch Hi-Fi All Over the Place

If you want simultaneous distribution of sound to more than one sterèo speaker system-say family room, den, etc.-up to eight different areas in any combination at the same time, Model 642 Sound Control Center is for you. Offices, schools. would be other applications. Model 641, on the other hand, has a positive interlocking feature between switch stations which insures that only one system at a time can be selected. Frequency response through the internal switching network is

U.S. GOV'T ELECTRONIC SUJRPLUS

SPECIAL SALE Correspondence Course In ELECTRICAL ENGINEERING

- (ITEM \#A181) - Wunderful chance to ohtaln teclinis al train. ing at Ainazing Lon Cow1: I. Incoln Einginepring sichool has suspended
 olter alimited number of the sentition paper gratline sentice. The course
 in a Reparate mection, "Stundant Alswerg" tu ench exam tuestion.
- Course is well writien, pasy to understand, prolusels illustrated.

 coln I ngineprink Course contanns latest intormation oft transistoris, sil. fron dioden, cic. Additiona! hook or, how to bujlad and operate a "Hume

LABORATORY EXPERIMENTAL KIT

PERFORM 100'S OF
FASCINATING
ELECTRICAL
EXPERIMENTS
Gov't Aquisition
Cost Of Ports
Over 575.00

$\$ 14.85$
 F.O.B.

- (ITEM \#A222) - Amasing value! Valuable eift lor sim or
 tronic theory ind practice. H,a*s, mieresting way to leam.
- Fivperimont "ith elpctromialink, plectro-maznelic phenomena, resonance, parclar marm. relay circuita, fretificalfun, tpare circuito. equesdropping, motor eaperiments, Iransiormer phenomena, ete.
- Kit Contains: nC motor, AC motor, electron-mentic colls, ac and dic rilays, set of tab capaciturs, compuss, test liuthe, platine
 carbun mir ruphour eavesdrobping elentent, ac test suchets, permanent

- Also furnished with each hit out popular book Home Bahoratery firneh and Evperimimtal brocrdures. (Heg. \$1.00)s. Whatw how to build wondertul home labitatory test lench, and how thert the most wut of your exporfunental woth. (12 liss.) Parts cost hav'l over $\$ 73.10$.

STANDARD DIAL TELEPHONE

- (ITEM \#715) - - Standard, commercial teirphuar same inh used throughuit U.S.A. Nitractire pulished blich, like new roadition. liser as
 lem. Full linstrucilons ate Furnlahed. WI, 9 ins. Ontinal Const $\$ 24.50$.

STEP-BY-STEP AUTOMATIC SWITCH

- (ITEM \#138) * Amazing "up-and-arournd". - Flactro-maznetir lelephond suateh. Dial any hank pait from it to too. Make your own telephone sigstem, t an also be usided to temotely co cuats oser a single pair of wires.
- tine of our Fot'l SrAft batgains. Cnmes com-

 dial. line bumk. Iisinactions
TYPICAL BUYS FROM OUR 1967 CATALOGS
\$ 350.00 - Geared 2 -hp Battery Golf Car Motor $\$ 24.95$
S 15.00 -Westinghouse DC Ammeter, 0 \$0 $300 \ldots$. \$ 7.11
s 10.00 - Vacuum/Pressure Pump, 12-voc $\$ 11.95$
... - 80-MW Walkie-Talkies, Per Palr $\$ 19.60$
... Delure, Multi-Aange, AC /DC Tester $\$ \mathbf{8 . 9 8}$
$\$ 4000.00$ - Carrier Telephone Amplifier System $\$ 13.91$
SEND 25c COIM OR STAMPS FOR 3 MAIN CATALOGS

All liems $F O$ R Lincoln Money Back Guarantee

SURPLUS CENTER

DEPT. RT-037 LINCOLN, NEBR. 6850

New Products

from DC to 30 kHz with negligible switching loss. No external power (other than audio power being distributed) is required for operation. Power handling capability is 100 watts maximum into a 4 ohm load. User net price for Model 642 or 641 is $\$ 49.50$ from Switcheraft. Inc., 5555 Elston Ave., Chicago, Ill. 60630. Write for details and address of nearest distributor.

Hobbyists' Solid-State Kits

At popular prices, the do-it-yourselfer can now get hold of a wide variety of blister-packaged electronic kits as follows: EC-100 Siren Kit, \$4.95; EC-101 Burglar Alarm Kit, \$6.95; EC-102 Fire Alarm Kit, \$6.95: EC-200 Intercom Kit, \$3.95; EC-300 Audio Amplifier Kit, $\$ 4.95$: EC-400 Metronome Kit, $\$ 3.95$; EC- 500 Tremolo Kit, \$8.95: EC-600 Light Flasher Kit, \$3.95; EC-700 "Mystifier" Kit, \$4.95; EC-800 Photocell Nite Lite Kit, \$4.95; EC-900 Power Supply Kit, $\$ 7.95$; EC-1000 Code Oscillator Kit, $\$ 2.50$. Shown is EC-1000. From EICO Electronic Instrument Co., Inc., 131-01 39th Ave., Flushing, N.Y. 11352. Each kit or group of kits may be the heart of your next home-brew project.

Flip Over Your QSL's
Luxury Madel (SD) Rotary Card Holder comes with 200 see-through Mylar binders to hold 400 QSL cards. You have more? Relax, you can add more binders to hold up to 600 cards max. The luxury model has knobs and base of solid gunstock walnut and a 2 -inch tapered Plexiglas frame and comes assembled in a gift box. Price- $\$ 24.35$
postpaid. The Standard (S) model has plastic knobs and base, chrome frame, has Mylar binders for 160 cards, comes knocked-down for \$9.95. Nordlund Radio Praducts, 7635 W. Irving Park Rd., Chicago, Ill. 60634.

Be Your Own TV Producer

A new closed-circuit TV camera, model SS-310, using less space than a telephone, is priced in the hobbyist range. Resolution at center of picture is 350 horizontal lines or better with monitors, and 300 lines or better with conventional receivers. The

camera circuit contains 19 silicon transistors, 2 germanium transistors, and 14 diodes. A clear picture can be obtained with a minimum amount of illumination, using 11.4 lens supplied with the camera. The SS-310 has an automatic electronic circuit that instantly compensates for wide and sudden lighting changes, assuring a clear picture under virtually all light conditions. Plug-in modular circuit boards facilitate replacements with a minimum of downtime. User price of the SS-310 with 11.4 lens, 25 feet of coaxial cable with connectors, is $\$ 289.95$. Maker is Squires-Sanders, Inc., Martinsville Rd., Millington, N. J. 07946.

Transistorized Doorman

This pocket-sized garage-door controller, the Electro-Lift, opens, closes, locks the garage door
and controls the garage light from 100 feet away. Meeting FCC rules, the Electro-Lift uses a new radio coding system called pulse-tone modulation. The $23 / 4 \times 33 / 4 \times 1$-inch, 10 oz . transmitter can be carried in purse or pocket, clipped to the sun visor or under the dashboard. The receiver fastens to the wall of the garage; not overhead as in other versions. The Electro Lift gives double protection

against mishaps with both pushbutton and automatic stop features: handles single or double onepiece doors up to 20 feet wide and 8 feet high, sectional doors up to 10 feet wide. The complete Perma-Power Electro-Lift system sells for $\$ 179.95$, and is friction-driven (the Perma-Power model G-670 is a chain-drive unit). Available nationally, or write to Perma-Power Co., 5740 N. Tripp Ave., Chicago, Ill. 60647.

Self-Service Technician

Mercury Electronics has dolled up their new self-service tube tester 204 Series in modern blue and grey cabinet designs. The new units have a panel designed to accommodate over 1,700 tube types including the latest nuvistors, novars, compactrons, magnovals and 10 pin types. They also test fuses, pilot lights, 6 . and 12 -volt auto radio vibrators. Only two settings are required to test any tube, and a flip tube chart lists over 1,700
 tube types. For positive contacts there are 68 phosphor-bronze and beryllium tube sockets. The Lo-Boy Floor Model 204LB is dealer net $\$ 209.95$. Counter Model 204C is $\$ 159.95$. Mercury Electronics Corp., 315 Roslyn Rd., Mineold. N. Y. 11501.

Low-Cost 4-Track Recorder

At a nice price (\$89.95) the Model RK-810. Stock No. 99-1527WX, has 3 speeds with 4 -track monaural/record and 4-track playback stereo with 5 position selector control for rewind. stop, run, fast forward and pause for instant editing. It has a selfcontained 5 -inch speaker, 3-digit tape counter with

MESHNA SURPLUS BARGAINS

GEIGER COUNTER chassis assembly, less probe tube, with 100 microamp indicating meter \& 550 volt transistor power supply which operates from 9 volt transistor radio battery. Unused. with schematic.

Stock\#410 \$4.00 SUN CELL KIT makes electricjty from the sun. Package of 5 cells with book of experiments. Stock \#SOL-1 \$1.50 SNOOPERSCOPE TUBE late style military IR viewing tube, see in dark. With spec sheet.
\#6032 \$6.50 ALNICO MAGNET, lifts 50 Ibs. \#404 \$4.00 POWER SUPPLY KIT output of $6-12-24$ volts DC 6 amps from 11 ; volt house current. Use it for powering surplus gear, plating, experimentation. \#340 $\$ 12.00$
IBM WIRED MEMORY PLANES 160 core plane witll sjee' sheet. (send for info on many larger types avallable)
\#160 \$4.00
INFRA RED DETECTOR TUBE sensitive IR detertor.
\#442 \$1.00
INFRA RED FILTER use on your IIght for IR source
\#442A \$1.75
POLAROID FILTER sheets, 5×5 inch \#255 $2 / \$ 1.00$
M-3 SNIPERSCOPE infra red viewer, complete operational, less battery. Nee in the dark. $\$ 225.00$
100 MICROAMP METER new GE, arbitrary scale \#434 $\$ 1.50$
PUSH BUTTON assembly from auto radio, with ant, RF, osc. assembly, brand new. Experimenters dellght. \#401 $\$ 1.00$

The above listing show only a few bargains avallable from our 80 page cataiog cranmed with fantastic \& unusual electronic \& optical equipment purchased by us from Government de varied sources. For the experimenter, photo bug. K \& D lab we have a most unusual catalog. Send 256 handling \& prod. cost for our latest listing of "goodies"
Al material shipped FOH Lynn, Mass. (you pay shipplng). Min. order $\$ 5.00$.

JOHN MESHNA, JR.

19 allerton St., LYNN, MASS. 01904

World Famed BREVETTATA TEAR GAS PISTOL

Appearance of this fine tear vallowem momememens cas weapon is similar to real gun. It is idaal for people who work in lonely, dark loeations and require protection. Man give this gun to wives and daughters for night security. Many industrial applications. Shooting of gun steps agers sor without permancnivy inju
ind him. Ne isense is needed, but is not sold retiminors. It fires six with ix toar as shalls and six blanks for wractice and is shipped prepaid. Gun unit prices include, 12 sholls and all shipping costs.

Gun-unit
Gun-units $\$ 22.86$................................... $\$ 13.07$ 3 Gun-units at $\$ 22.86$............... $\$ \$ 9.98$ ea. $\$$ 4 Gun-unifs at $\$ 35.16$.................. (\$ 8.79 a.) Extra boxes of ten tear mas sholis at $\$ 1.50$ por box gun orders). Extra boxes of blanks at $\$ 1.25$ per box.

UNITED SAFETY SUPPLY CO.
349 Manufiacturers Exchange Kansas City 5RT, Missouri

Tape this ad to the back of your TV or Radio Set

- ALL BRAND-NEW, First Quality. All Types Available. - Orders Shipped First Class Same Day Rec'd. - Unconditionally Guaranteed. 24 Month Warranty. Send $\$ 1$ for ea. tube +50 c . postage \& handling of entire order. FREE: Write for "do-it-yourself" TV Test Chart and
 Tube List to Oept. RTE-267.

resat button, stereo tape head output jacks, 2 in. puts for mike and auxiliary. Response is $40-15,000$ Hz at $71 / 2 \mathrm{ips}: 40-10,000 \mathrm{~Hz}$ at $33 / 4 \mathrm{ips}$. Signal-tonoise ratio is 40 db or better; crosstalk 55 db or better. Sixe is $115 / 6 \times 11 / 4 \times 62 / 3$ inches. Takes 3 . to 7 -inch reels. Comes with dynamic microphone, 3 cannecting cables, 2 rubber reel caps and 7 -inch empty take-up reel. Textured vinyl case. Model RK-810 from Lafayette Radio Electronics Corp., 111 Jericho Turnpike, Syosset, N.Y. 11791.

For Part 15'ers

With the Rangemaster 100 mW transceiver comes a guarantee stating that it will outperform in range and clarity any CB transceiver not requiring an operator's license. Reason for claim? An additional RF amplifier stage for long range reception. Pluses: extra sensitive superheterodyne receiver: crystal-controlled transmitter and receiver with separate microphone and speaker for telephone-like operation: switch controlled squelch, tele-
 scoping 60 -inch antenna. The Rangemaster can be used with AC base station or AC adapter. Over 200 mW audio output; better than 30 db signal-to-noise ratio: 18 db selectivity. Uses 6 Penlite batteries. Size $8 \times 21 / 2 \times 3$ in., weight $1^{1 / 2}$ lbs., price $\$ 39.95$. For information: Claricon, 663 Dowd Ave., Elizabeth, N. J.

Magnetizer Demagnitizer

This beautifully simple little tool eliminates the need for special magnetized tools. To magnetize a screwdriver just insert into one of the holes in the Sure-Nuf. The screwdriver retains its new magnetic properties until it is drawn across one of Sure-Nuf's outside metal plates. This breaks the magnetic field, and voila! it's back in its non-
magnetic state. Smaller than a cigarette pack and weighing less than four ounces, the Sure.Nuf's permanent magnets never need recharging. Re. tail price is $\$ 2.89$ from New Enterprises Inc., PO Box 338, Reno, Nevada 89504.

Go-Anywhere Antenna

The Trik Stik (Model TS-1) antenna can be mounted vertically or horizontally anywhere, under any conditions, for the following applications: Citizens Band, business radio (low and high band), SWL, monitor, aircraft, Civil Defense, ama.

teur, experimenter, television, FM. Assembly is accomplished in minutes for permanent installations, temporary stations or test purposes and complete instructions are supplied with measurements for setting Trik Stik to the correct dimensions for any of the services listed. Price is $\$ 6.45$ and it comes from Cush-Craft, 621 Hayward St., Manchester, N. H. 03103.

Cardioid Dynamic Mike

The cardioid pickup pattern of Olson's new mike sharply reduces feedback in PA and recording applications. Model M-216 has a moisture. and heatresisting hermetically sealed cartridge, durable cast metal case. Will fit any stand with 5/6-27

thread. Impedance, 50 K ohms: response 100-12,000 Hz . Comes with $20-\mathrm{ft}$. shielded cable, diameter $17 / 8$ in., $41 / 2$-in. long. $\$ 14.98$ from Olson Electronics, Inc., 260 S. Forge St., Akron, Ohio 44308.

Bargain Regulated Power Supply

Here's a bargain for the experimenter or service technician who needs a low-cost variable source of ripple-free regulated DC power. Model PZ-121. available in factory assembled or kit form, delivers stable, continuously variable output from 0.15 volts DC and usable currents to 250 ma . from an AC line. This compact ($61 / 4 \times 33 / 4 \times 2 \mathrm{in}$.), solid-state

unit provides regulation better than ± 0.2 volts and AC ripple of less than 5 mv for outputs to 100 ma. Zener-reference model PZ-121 features burnout proof circuitry and transformer isolated output. Price-a mere $\$ 13.95$ in kit form, $\$ 19.95$ assembled, from Viking Engineering of Mpls., PO Box 9507. Minneapolis, Minn. 55440.

20,000 0 hms -per-Volt VOM

Knight-Kit has a new VOM. model KG-640. listed in complete detail in Allied's 1967 catalog No. 260. The KG-640 has a total of 57 ranges starting as low as 0.8 VDC, covered by a positive-action range/function switch and range-doubler switch that vir-
 tually doubles the effective number of ranges. Repeatability of readings is promised by its rugged taut-band meter movement. No damage is possible to the protected movement. even with 1,000 times overload. The new KnightKit 20.000 ohms-per volt VOM, with test leads. batteries and detailed instructions, is priced at $\$ 39.95$ in kit form, $\$ 59.95$ assembled. Allied Radio Coip., 100 N. Western Ave., Chicago, Ill. 60680.

THOUSANDS OF BARGAINS TOP VALUES IN ELECTRONIC
 parts

Translstors, Modules, Speakers, Stereo, HI-FI, Photo Cells and thousands of other Electronic Parts. Send for FREE Catalogue

ELECTRONIC DISTRIBUTORS INC.

EDI
Dept. TA-2. 4900 Eiston Chicago. III. 60630

- mush catalogue
Name
\qquad City
State Zip Code....

FULL OF TOP QUALITY ITEMS-
Transmitters, Receivers, Power Supplies, Inverters. Microphones, Filter§. Meters, Cable, Keyers, Phones, Antennas. Chokes, Dynamötors, Blowers, Switches. Test Equipment. Headsets, Amplifiers, Converters, Control Boxes, Indicators, Handsets, etc., etc. SEND 254 (stamps or coin) for CATALOG and receive 50¢ CREDIT on your order. Address Dept. 34.

ES
 P.O. Box 1105 - LIMA, OHIO - 45802

364 VHF RECEIVER
The 364 B receiver provides the shortwave listener coverthe from 26 to 54 and 88 to age from 26 to 54 and 88 to 174 MC in eight calibrated bands. It copies AM and FM signals. Completely self-contained. Keady to plug in. $\$ 54.95$
KUHN ELECTRONICS, INC. 1801 mille Ave. Norwood. Ohio 43212

LEARN ENETHE
 Fix TV. design automation aystems, learn transistors, complete electronics. College level Home Ntudy courses taught go you can understand them. Fiarn more in the highly paid electronics industry. Coniputers, Missiles. theors employed. Hesident classes nistied. Cher 30.00 camp if desired. Founded 1934. Catalog. at our Chicago campus in INSTITUTE OF ENGINEERING \& TECHNOLOGY
 $1139 E$ West Fullerton Parkway Chicago, Illinols 60614
 Vete-write for information about GI Bill Training

AIL BAND BAIIERY SHIDRT WAVE RADIO XII SI2.95

Listen around the worla - inousanas of mifes UIm-tondon-Anstralla-Arice ours-Police-A Also USA Brwadcast-5 Wave Bands $1 / 3$ to 43 MC! ${ }^{4}$ World
Calibrated tuning dial. Wt. only ${ }^{2}$. Calibrated tumin
Send only icsah Ck Mo) and pay postman
 $\$ 3.00$ shown del inc USA. Buste Kit an BC coll FREE. Long Distrace antenna. if you BC coll ${ }^{\text {OREE }}$ Ayallable only from Hidway C_{0}. Dept, NRE-2, Kearney. Nebr.

YOUR POSTMASTER SUGGESTS: ZIP CODE NUMBERS
 TO HELP SPEED YOUR MAILUSE THEM IN ALL ADDRESSES

- Many's the Ham longing for a super skyhook, but Bob Ryan, W7GWA, isn't one of them. For Bob numbers anoong the operators of what may very well be the highest Ham station in the world, which, because of its unusual location, also boasts a skyhook to top all skyhooks.

Installed on the observation deck of the Seattle Space Needle some 550 feet above the city's rooftops, station WA7GBD is operated by the Space Needle Amateur Radio Club. And Bob, who is one of the club's 75 members, takes turns working Hams around the world from this strange Ham-station-in-a-needle.

Bob generally works 20 -meter SSB, using a Drake TR-4 transceiver and a companion RV-4 remote VFO. Currently, the station is heard as far away as Japan, Brazil, and Rus-
sian Siberia. Even greater range and reliability are expected when the present 300 watt transmitter is joined by a kilowatt linear, which is now on order from Drake. When it arrives, Seattle's Ham-station-in-aneedle will be as powerful as any amateur station going.

In spite of the Club's extraordinary offerings, there are no membership dues or other fees. The Space Needle organization simply issues free elevator passes to all members so they can have ready access to the station at any time. And since nearly a million people visit the observation deck annually, the public relations value of the station is thought to be excellent. Most of the visitors see the station in operation, frequently handling traffic from U.S. servicemen on ships and at bases overseas.

CW Monitor

How can I add a code monitor to my CW transmittcr?
-C. C. S., Moody AFB, Ga.
While you could build an audio tone generator and key it simultaneously with your transmitter, you will not be actually monitoring your transmitted signal. To do so, all you need

is a simple regenerative receiver, operated in an oscillating condition, a grid-dip meter or a heterodyne-type frequency meter, such as the BC-221 which is available at military surplus outlets.

You can build a monitor using a circuit such as shown in the diagram. (The coil can be a plug in type so you can change coils when switching your transmitter from one band to another.) Just place it near the transmitter and tune in its signal, with the key down, until you hear a beat note. You will then be able to

Fill in coupon for a FREE One Year Subseripo tion to OLSON ELECTRONICS' Fantestic Value Packed Cafalog-Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Teals, Stereo Amps, Tuners, CB, and ofher ValUes, Credit plan available.
NAME
ADDRESS
CITY \qquad STATE \qquad Z1P \qquad
If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS

INCORPORATED

567 S. Forge Street Akron, Ohio 44308

ENGINEERING MATHEMATICS

NOW! A NEW WAY TO I.EARN-I. H. S. I. WAY. A complete home study course in engineering math to help you get the position you wantMORE MONEY-MURE RESPECT.

COURSE PREPAREDBY
COLLEGE PROFESSORS
who have lectured to thousands of men on math and engineering. You learn at home quickly, easily-As FAST as you want.
you nlid no CONTRACTS
Pay only if satisfied-you owe it to yourself to examine the NDDANA HOME STEDY INSTITVTE COURNE N ENGINEERING MATH, FREE BONUS-if you join now, a refresher course in basic arithmetic.

Write for Brochure-No Obligation
THE INDIANA HOME STUDY INSTITUTE
Dept. RTV-2, P.O. Box 1189
Panama City, Fla. 32401

Ask Me Another

monitor your transmissions. The oscillator is tuned by adjusting its ferrite core. An antenna may be connected to the antenna binding post, but is usually not necessary when near a transmitter.

Q-multiplier vs: Crystal Filter

My shortwave set employs a $1650-\mathrm{kHz}$ IF . Would a Q-multiplier do any good, and where can I get one?
—R. N. K., Morton Grove, III.
A Q-multiplier is most effective at relatively low frequencies, 455 kHz and below. For 1650 kHz , a crystal filter can be used to improve selectivity. It is inserted at the input of the IF amplifier. They are made by several companies, primarily for equipment manufacturers. One company near you, Nieder-man-Sherold, Inc., 4302 Warren Avenue, Hillside, Illinois, makes a 1650-kc crystal bandpass filter.

QSL a Satellite

Is it possible to receive satellite signals from outer space on a shortwave set? If so, on what frequencies?
-C. B., Seattle, Wash.
Russian satellites transmit on around 20 MHz within the tuning range of most shortwave sets which usually tune up to 30 MHz . American satellites transmit on frequencies around 100 MHz . A special VHF receiver or a converter ahead of a shortwave receiver is required.

Mum's the Word

I have sent QSL cards to ship and marine coast stations I have heard, but have received no verification from them. Why don't they acknowledge my reports?
-A.R.T., Marysville, Wash.
You aren't supposed to send QSL cards to any but broadcast and amateur stations, un-

Add Noise Limiter

Can you give me a circuit for adding a noise limiter to my National SW-54 receiver?
-J. L., Seattle, Wash. The original circuit of the detector and firstaudio stage are shown in the upper diagram. Break the circuit at " X " and add five resistors, three capacitors and a diode as shown in the lower diagram.

less you are requested to do so personally or by published invitation. An international treaty and the Communications Act make it unlawful for anyone to divulge the contents of any transmission, or even its very existence, from any class of station except broadcast or amateur.

Manufacturers' Radio Service

I recently read that 30 new low-power radio channels have been allocated in the 72-to $76-\mathrm{MHz}$ band. Where can I get equipment for this band?
-R. K., Passaic, N.J.
It has been reported that Femco, Inc., Irwin, Penna, and Union Switch \& Signal, Swissvale, Penna., will have equipment available for the $72-$ to $76-\mathrm{MHz}$ band. However, these channels are restricted to those eligible in the Manufacturers Radio Service and may not be used for hobby or personal purposes.

Can or Will Earn?

How much can 1 earn as a radio-TV service technician? I have completed a correspondence course and have had experience building kits. -E. L., Edmonds, Wash.
In your part of the country, union scale for a technician is $\$ 3.60$ per hour and is supposed to rise to $\$ 3.75$ in 1967. Some non-unions shops pay less, some more for an experienced man. New York subway crews earn as much. But, electronics can be more fun.

TRANSISTORIZED CONVERTER KITS $\$ 5.00$ EACH

Three kits available. Marine 2.3 mc , police \& fire, high band $100-200 \mathrm{mc}$, low band 26.60 mc . I me tuning on car radio. Full instructions.

ANY KIT $\$ 5.00 \mathrm{pp}$. WIRED $\$ 15.00 \mathrm{pp}$.
 FRED MESHNA, NO. READING, MASS. 01864

Take the guessing out of home buying. Complete plans and specifications from leading architects.

SMALL HOME PLANS- $\$ 1.25$
on sale now or write Davis Publications, Inc./505 Park Ave./New York, N. Y. 10022. Add 25 ¢ each for postage \& handling.

Ask Me Another

Detector for FM, AM, CW and SSB

How can I modify a communications receiver to work on FM as well as AM, CW and SSB? -R. H.. Seattle, Wash.
You can replace the AM detector and first AF stage with a gated-beam tube (such as 6BN6) using the circuit shown in the schematic diagram. The existing IF transformer feeds the control grid of the tube. When S1 is set to AM and S 2 is set to F (for fast AVC response) or S (slow AVC response), the grid and cathode function as a grid leak or diode detector and the rest of the tube functions as an AF amplifier. AVC voltage is developed across $\mathrm{R} 2-\mathrm{R} 3$ and is tapped off at their junction. Diode D1 prevents AVC action until the signal reaches a satisfactory level. With S3 open, the positive bias on the quadrature grid can be varied with R1 for minimum audio distortion.

When S1 is set to SSB/CW, the signal from the receiver's BFO (beat frequency oscillator) is fed to the quadrature grid to form a product detector. AVC attack time can be selected by setting S2 to F or S.

For FM narrow band reception, S 1 is set to FM and C1-L1 are connected to the quadrature grid to form a gated-beam discriminator. By setting S2 to the None position, AVC is cut out and the tube also functions as a limiter. Closing S3 makes it possible to vary the cathode bias on both the control and quadrature grids with R1 for maximum sound recovery and best limiter action. The quadrature coil (L1) is tuned to the same frequency as the receiver IF and trimmed for maximum FM audio recovery.

High-Frequency Problem

I have a (Brand X) 4-tube superhet shortwave receiver which has good selectivity and sensitivity up to about 14 mc . But, from there up to 30 mc , it lacks the ahility to pull in all hut the very strongest signals. Would the addition of a preselector solve this problem?
-C. L., Brantiord, Ontario
Have you had the tubes checked on a critical tube tester? Try new converter and IF-amplifier tubes. Also adjust the highest frequency band RF trimmer when tuned in to a CB or 10 -meter ham station and again when receiving the weakest signal you can tune in. If you have or can borrow a signal generator, realign the IF transformers. Be sure to use a proper outdoor antenna. A preamplifier (preselector) would help, but it doesn't sound as if you were getting all of the performance that was designed into your receiver.

Sure Mike!

Can you give me the address of a company that produces a transceiver-type mike for ham transmitter use?
-L. Dec., Austin, Texas
Roanwell Corp., 180 Varick Street, New York, N. Y. 10014 makes mikes of this type. So do many others including Electro-Voice, Turner and Sonotone. Try your local elec-tronics-parts distributors who should have them in stock.

A Hot Note

1 recently read in Variety that a musician was killed as a result of electrocution while playing an electric guitar. How can this happen?
-H. H., Van Nuys, Calif.
He must have been in a bathtub or standing on a wet floor when it happened. Alvino Rey and others have been playing electric guitars for years with no ill effects. The danger of electric shock can be great under some conditions. For example, a skindiver, who was testing an underwater TV camera in Al Ogilvie's swimming pool in California would have been electrocuted when he took the camera into the pool if it hadn't been noted that the camera was "hot" to the touch when the camera was handled at poolside. Grounding the shield of the camera cable saved the skin diver's life. The camera was "hot" because of the line-filter capacitors in its power supply which put the case about 60 volts above ground potential. The same hazard exists with TV sets and hi-fi devices. Moral: Don't touch any appliance connected to the AC line when bathing.

Crystal vs. Mechanical

Would you please tell me how to connect a mechanical filter to my communications receiver (diagram enclosed)?
-J. B., Topeka, Kansas
Your set already has an adjustable crystal filter whose bandpass or selectivity can be varied. You don't need a mechanical filter. Receiver design engineers are still arguing which is better, a crystal filter or a mechanical filter. They're both good. If I were you, l'd keep what you have.

NOW AT YOUR NEWSSTAND! New 1967
 Electronics Hobbyist Annual

Hours of
"How To" Enjoyment for PRO \& NOVICE

$\$ 100$ O FOR A LIMITED TIME ONLY .. . You can purchase the newest, most exciting magazine for those whose interest in electronics is on the hobby level. The Electronics Hobbyist contains easy to learn, tested and proven construction projects of every description, Literature Library and New Products sections as well as such new departments as CB News and Views, Hi Fi Trends and Communications for the Ham/SWL.
 SOME CONSTRUCTION PROJECTS INCLUDE:

Audio Compressor Ohms-Range Expander Dial-An-Ohm
6-Meter Solid-State Walkie-Talkie Transi-Match
A Go-Go Stereo Compact
100-kHZ Calibrator Build The Aero-Bander SCR Slave Photoflash

Plus many more projects, gadgets and construction idea -enough to provide every experimenter with weekend fun for six months or more.

FOOLPROOF DESIGN!

 EASY CONSTRUCTION:Your favorite construction project has been carefully researched and tested by experts. Fach article is complete with theory, construction tips, parts lists, diagrams, and photos to make construction easy and foolproof.

ACT NOW!

Don't miss this opportunity to get your copy of The Electronics Hobbyist. Do not delay! The 1967 Edition is now on sale at your newsstand and will be available for a short time only.

FOR IMMEDIATE HOME DELIVERY RETURN THIS COUPON TODAY!!

Ask Me Another

Does it Pay?

How can I boost the input power of my 5 -watt, 2-meter transceiver to 75 watts?
-L. B., Morton Grove, Ill.
Get a linear amplifier. Connect its input to the output of your transceiver and the antenna to the output of the linear amplifier which should have internal antenna switching facilities. However, you can quadruple your effective radiated power by installing a 6 db gain antenna which costs less than a linear amplifier and won't increase your electric bill. Call AM 2-2903 in Chicago and ask for Griff. He's near you and can tell you what kind to use, where to get one and for how much.

Just a Minute

In one of your articles about building a novice antenna loader, a B \& W Miniductor coil form was specified. Where can I get one?
-D. P., Cuyahoga Falls, Ohio.
It is made by Barker \& Williamson in Bristol, Penna. If you can't find it at your local radio parts store, write to Mr. A. Consalvi at B \& W.

Carrier for Frequency Standard

How can I recover the unmodulated carrier from an $A M$ broadcast station so I can use it as a frequency standard?
—J. Т. H., Pittshurgh, Pa.

Rig up an oscillator using a circuit such as the one shown in the diagram. Place it near an AM broadcast receiver and tune in a station at the desired frequency. Then tune the oscillator close to the broadcast-station frequency so you will hear an audio beat (whistle). Carefully tune the oscillator for zero beat, the point where no whistle is heard. You'll have it set right if you get a whistle when you turn the tuning capacitor either way. When set to zero beat with a signal of known frequency, your oscillator will be within a few cycles of that frequency.

9-Volt Battery Eliminator

Can you give me a circuit for an AC power supply for replacing a 9 -volt transistor battery? -P. C., Helena, Montana

Four 1N1693 or similar diodes, a 6.3 -volt filament transformer and an electrolytic capacitor, connected as shown in the diagram, should do the trick. The no-load voltage should be around 9.8 volts which will drop somewhat under load.

Engineering Takes Years

I nant to assemble a transistor radio capable of receiving radio signals in Canada from radio stations of Indo-Pak Subcontinent, especially the following: All India, Radio Delhi, Rudio Pakistan Karachi, Radio Lahore (Pakistan), Radio Sirinagar (occupied Kashmir), Radio Jammu (occupied Kashmir), Radio Jallunder (Panjab, India), Radio Ceylon (commercial station operated from Bombay, India), Radio Dacca (Pakistan) plus local longwave stations. If it is possible, could you please draw a diagram and advise equipment to be used to produce a "perfect model."
-A. A., Vancouver, British Columbia
If it were possible to give you a diagram of an all-transistor, all-wave receiver meeting your requirements, we would do so gladly. There is such a receiver on the market (National) but it costs more than $\$ 1,000$. It probably cost the manufacturer more than $\$ 100,000$ and several man-years to design it. While we could dream up a diagram, there are countless other problems you would have to solve yourself. It would cost you a great deal in money and time with no assurance of satisfaction. As a compromise, you might consider Lafayette's 11-band portable at around $\$ 160$ or Zenith's Transoceanic, ready to use.

Filter vs Crystal

Please don't make fun of the use of a mechanical filter with a "Q" multiplier. I have a Hammarlund HQ-100 with a Lafayette mechanical filter and the results are excellent. Adjacent channel $Q R M$ is much reduced and stability is considerably improved. For CW reception it cannot be beat for the price.

- R. C., Manchester, N. H.

Of course a mechanical filter is a good device. But, in a receiver which already has a crystal filter, why add another one? Since your receiver does not have a crystal filter, the addition of a mechanical filter makes sense.

SWL Skywire

I am a heginner SWL. What is the best antenna selup for $10-160$ meters?
—M. B., Toronto, Ontario
Start out with a 50 -foot wire antenna. Allied Radio in Chicago offers a complete antenna kit for 98 cents. You should be able to get one in Toronto for not much more. Later, as you get more experience, and if you have adequate space, you can use something more exotic.

Dig for Tunnel Diode

I cun't find a TI)-I tunnel diode for ase in the TD-FM radio described in a recent issue. What other type call I use?
-L. A. R., Detroit, Mich.
Get a GE 1N3712. It sells for $\$ 3.75$.

Don't, If You Don't Know

I have 3-phase, 3-wire, 220-volt power. I have a machine which operates from a 220-volt, 2wire circuit and ground. Can I connect it to two wires of the threc-phase circuit and run a ground to the water main?
—W. O. S., Niles, Mich.
If the ground lead is used only for grounding the frame of the machine and is not actually connected to the 220 -volt line. OK. Otherwise, you may need a star-to-wye transformer. Before you do anything. consult the power company.

Don't

. . . what's new in electronics. Begin your subscription to RADIO-TV EXPERIMENTER with the next issue. RADIO-TV EXPERIMENTER is dedicated to the hobbyist-the man who wants to obtain a fuller and broader knowledge of electronics through the applications of his hobby.

The magazine that serves up electronic theory in pleasant spoonfuls and reinforces the knowledge you gain with exciting and useful projects.

Special Introductory Offer

 12 issues for only $\$ 4.00$. SAVE 50%

Ask Me Another

VFO or Crystal?

How can l install a crystal in my 30 to 50. MHz band FM receiver for receiving on 39.46 MHz?
-A reader, Someplace, USA
The first diagram is the circuit of the oscillator stage of your set, according to the schematic you sent. The second diagram is the modified circuit. Use the same oscillator coil tuned by a trimmer capacitor. Disconnect the oscillator section of the main tuning capacitor. You still use the tuning dial to tune the RF amplifier and mixer to 39.46 MHz . For that frequency, use a 28.76 MHz crystal.

It's a Boo-Boo!

When watching TV commercials I have noticed that a commercial will come on for a second or two and then there is some kind of a switch. The commercial comes back on but at the beginning instead of at the point where it was interrupted. Do TV stations or networks run two films of the same program at the same time, with one as back-up?
-W. A. W., Huntington, West Va.
Checking with a major TV station in New York City, it was learned that no back-up film is used. In case of failure, the operator probably winds the film back up on the reel and reruns it. Thus, you will see it from the beginning. Even though film problems do sometimes arise, station and network executives often let operators know that "it will not happen here." . . . but it does-sometimes.

OCR for ZIP
What is OCR and what is it used for? -N. K., Philadelphia, Penna.
One meaning of OCR is optical character recognition, a technique for reading printing and written matter electronically. In one system, each character is looked at quickly by a flying-spot scanner, a kind of TV camera. What the scanner "sees" is sent in the form of electrical signals to logic circuits which identify the character and send a digital signal to a computer. For example, the logic circuitry can determine the difference between a handwritten lower-case E and a lower-case L. Both look alike but one is taller. OCR systems are used to read accounting forms and other documents as well as the ZIP code on letters.

Ceylon to a "T"

What make and model shortwave set might be capable of receiving Radio Ceylon on 11,800 kHz here in California?
_G. G., Davis, Calif.
Almost any sensitive superhet shortwave receiver that can be tuned to that frequency should be able to pickup the signal when it is bounced your way. However, the set should be equipped with a good outdoor antenna.

B-plus and Filament Power

Is it possible to build a AC-power supply furnishing 22.5 to 30 volts DC and 6.3 volts for a radio using a $3 A U 6$ tube?
—T. L., Springfield, Ohio
You can use the circuit shown. The transformer furnishes 3.15 and 6.3 volts AC. Plate voltage is obtained from the AC line through a voltage divider composed of four No. 327 pilot lamps. According to the RCA Receiving Tube Manual, a 3AU6 tube requires 3.15 volts, not 6.3 volts, for its filament, as does a 6AU6.

Solid-State S-Meter

Can you tell me how I can add an S-meter to a transistor shortwave receiver?
-A. D., Uluado, Puerto Rico If your receiver has AGC, you can use the circuit shown in the first diagram. You will have to reverse the meter leads, depending upon whether the set uses $p n p$ or $n p n$ transistors. On the other hand, if your set does not have AGC, try the second circuit. Resistance values are approximate since it would be necessary to have a schematic of your set to determine exact values.

Now You Know!

In your White's Rudio Log, you don't list police, fire and other non-broadcast stations. Why not?
—J. B., A von Lake, Ohio
There are more than $1,500,000$ police, fire and other radio communications stations plus countless mobile units. It would require several books to list them all. They are listed in the several volumes of The Radio Registry published by Radio Magazines, Inc., Box 629, Mineola, N. Y.

Skirling Got Ya' Whirling?

On my shortwave radio I hear tones which sound like bag pipes. What are they and what is their purpose?
-M. E., Brooklyn, N. Y.
They are undoubtedly tones used for remote control or telemetering. In what is known as tone multiplexing. iwo or more tones may be transmitted simultaneously, producing unusual sounds.

How About That?

One of our local stations is on FM but still operates on $A M$ even though it was told not to
operate on the $A M$ band by the FCC. Why doesn't its owner obey the FCC?
-J. W., Cleveland, Ohio
Believe me, the station would not be operating in the AM band if it didn't have a license to do so. Many broadcasting companies use the same program material, simultaneously, on both AM and FM transmitters. The FCC now requires FM outlets to broadcast (a portion of their broadcast day) separate (different) programs.

Van de Graaf Measurements

How can I measure the amperage and wattage of my Van de Graaf electrostatic generator? The instructions list only the voltage.
-T. T., Iselin, N. J.
The current is infinitesimal. Otherwise, the device would be dangerous. While it might be possible to measure the current, it wouldn't be worth the required investment in instruments. Why not ask the manufacturer who may have made the measurements in a laboratory?

Aero Bander Not for FM

How could I modify the Aero Bander 10 receive the FM broadcast hand?
-11. A. F., San Antonio, Texas
Your AM radio would not demodulate the FM signals.

That's an Iffy Question

If a spacecraft could be built that could go fuster than radio waves, it could overtake and intercept radio waves from the past. Right? What would happen if the radio signal and the

Ask Me Another

receiver were both traveling at the same speed? -E. S., Garden City Park, N. Y.
I guess it would continue to receive the same thing like "Johnny One Note" or a pickup stylus stuck in a record groove.

Needle Sticks?

I have an Armaco AR4 VOM with a 95microamp meter movement. Whenever the test leads are shorted (for the resistance test), the necdle moves to only a point somewhere hetween one-quarter and one-half scale position. Battery voltage and all resistors seem to be OK. What could be the problem?
-W. J. L., Toronto, Canada
Still sounds like resistor or battery trouble. Even if the resistors pass current and look OK, they could have changed in resistance value.

TV or Not TV

How can I convert an old TV set into an oscilloscope?
-M. S., Amherst, N. Y. It wouldn't be worth the trouble. You can buy a scope kit for about $\$ 80$ and you will get much more benefit from it.

Swing It

1 have an old 0-1 milliamineter. The needle swings quite some time before it comes to rest. What can I do about it?
-H. W. B., Bonarlaw, Ontario
Sounds like it needs mechanical repair and adjustment, which could be expensive at today's skilled laber rates. Since a new meter costs so little, why don't you get a new one?

RF Amplifier Doesn't

I recently built a class-C RF amplifier which does not amplify. Diagram is enclosed. When I feed 10 watts into it, I get about 5 watts outt. Also, I get RF output at the input but not at the output of the pi network. Yet, the pi network still has a tuning effect. What is wrons?
-J. P., Ogden, Utah

Try, Try Again

How can I identify kind and rating of an assortment of semiconductors and transistors of assorted shapes and no marking?
-G. W. B., Lancaster, Calif.
ls it going to be a boy, girl or an it? That's the way it is with transistors. When they reach the end of the production line, they're tested and marked to indicate what they turned out to be. You could spend hours running tests on your diodes and transistors and trying to match them up with the specs on umpteen thousand types. Just try them in circuits. If one doesn't do what you expect, try another one.

Brand X Does it Again

I have a noise problem with my swo identical (Brand X, Model Y) CB transceivers. It is so bad that it is almost impossible to receive anything except over very short distances. I have tried using them both as a mobile unit and a base station, but both are just as noisy in either application. Can you give me a circuit for a noise limiter I can add?
-P. L. McG., Knoxville, Tenn.
Looking up the circuit of your sets we find that a noise limiter is included and the sets should be very sensitive, the latter accounting for the noise. You probably live near a busy street and pick up ignition noise from passing cars. Try moving your base antenna away from the street and, in your car, suppress the noise at the source with adequate suppression devices.

Canadian Ham

Can you tell me where I can get a radio amateur license in Canada?
-R. M., Lacombe, Alberta
Write to the Department of Transport in Ottawa. They can furnish you the address of their nearest field office.
(Continued on page 35)

Looking at your diagram, it appears that C6 is connected to the wrong side of RF choke L4. If actually connected as shown, the plate of the tube is bypassed to ground for RF. Connect C6 to the B+ side of L4.

Ask Me Another

 Continued from page 32

Using SCR's

Can yout tell me where I can get a schematic and parts list for a 1500-watt light dimmer using two SCR's back-to-back and for operation from a 115 -volt 60 -cycle $A C$ source."
—J. A. W., Ridgeway, Ont.
Write to either General Electric, Rectifier Components Dept., Auburn, N. Y. or Westinghouse Electric Corp., Semiconductor Division, Youngwood. Penna. Their application engineering departments should be able to suggest a circuit. Also you might get a copy of the GE SCR Manual or the Westinghouse SCR Designers Handbook. Both are available from the respective firms at $\$ 2.00$ each.

Knee-High to a Brass-Pounder

What is the age limit for an amateur radio operator license?
-C. S. C., Queens Village, N. Y.
There is no age limit. There are quite a few young hams. I got my general class ticket when I was 14, which was a long time ago.

Brass-Pounders Delight

Can you tell me who, if anyone, is interested in old Morse telegraph equipment?

> -C. A. N., New York City

The Toledo Morse Chapter is collecting antique telegraph equipment. Leon C. W. Kettring, 1118 Clymena Drive, Toledo, Ohio, is head of the organization's procurement committee.

Biggest KW?

What is a California kilowatt?
-D. W., Palo Alıo, Calif.
A California kilowatt is a ham expression for transmitters allegedly employed by some hams in California that operate at much higher power than the legal one-kilowatt limit. Such operation is illegal, but it is said that it is practiced by some. Since everything is supposed to be bigger in California than elsewhere, so are some ham rigs, they say.

Now at your newsstand! In the February Issue of SCIENCE \& MECHANICS

Noted author and automotive expert Joe Gutts reveals the results of the extensive tests he gave the 1967 Volkswagens in the February issue of S \& M. Also read "The Remarkable Gunstra Rotating Engine" . . a new engine (not yet in production) invented by a New Jersey designer . . only 12 moving parts; completely inclosed; a very low weight-high h.p. ratio.

SAVE $\$ 2.00$. . a fabulous $\mathbf{5 0} \%$ savings!

What better way to keep up-to-date on the most dramatic events shaping our ever-changing world than through the pages of SCIENCE \& MECH-ANICS-now at a special low introductory price.

12 MONTHS—ONLY \$2

You save a whopping 50% from the regular subscription price. Don't pass this up. Great reading at a great price. Use the coupon to subscribe.

If You Service Citizens Radio Transceivers...

you should have
AN INTERNATIONAL C-12
FREQUENCY METER

Four Instruments In One

The $\mathrm{C}-12 \mathrm{~B}$ is more than a frequency standard-it measures power output, measures AM modulation, and is a signal generator . . . all self contained in one convenient unit.

check these features!

- Frequency Measurement - Range 26.965 mc to 27.255 mc . Frequency stability $\pm .0025 \%$ $32^{\circ} \mathrm{F}$ to $125^{\circ} \mathrm{F} ; \pm .0015 \% 50^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$.
- Power Measurement - 0 to 5 watts, accuracy $\pm 1 / 4$ watt.
- Counter Circuit - Frequency range 0 to 3 kc . Residual error 100 CPS @ zero beat.
- AM Modulation Measurement - Range 0 to 100%. Accuracy 3\% @ 400 CPS @ 80% modulation.
- Signal Generator - Frequency range 26.965 mc to 27.255 mc . Low output 1 mic rovolt through special pick-off box furnished with meter. High output 100 microvalts through output jack.

Write for complete catalog

CAYSTAL MFG. CQ., INC. $1 B$ NO LEE DKLA. CITY, OKLA 73102

Twning in on the body's ills

By K.G. Kirkbride

- It all started with a pill, a pill that was a radio station, a radio station that could transmit "news" direct from a human stomach. The pill was followed by a camera, a camera so small it could be swallowed and photograph a man's stomach in living color.

At first, no one took these tiny pioneers very seriously. For at the time medicine appeared to be in one corner, electronics in another, and the two weren't going to pull off any full-fledged marriage for a long time-if ever. But that was before man began to seriously consider the fact that his brain, nervous, and muscular systems are all electrical. And if man himself is electrical, why not his repair and diagnostic systems?
(Continued overleaf)

Tuning in
 on the
 body's ills

This realization led to a new science called biomedical engineering, a discipline that combines electronic with medical techniques, sometimes borrowing from space and military research to create new diagnostic wonders. One day soon such marvels may rule out the hit-or-miss human error that has characterized medicine up to our time. Come that happy hour and current medical techniques may seem as medieval as when man applied leeches to cure his aches and pains.

All One. Now being introduced in major hospitals is a master six-unit electronic medical internist built by Honeywell. Its big claim to fame is the fact that it can instantaneously record eight types of information about a patient and show them on a $17-\mathrm{in}$. screen.

ECG, EEG, EMG, PCG, and other electrodes sensing surface and below-skin changes show heart, brain action, and skin temperatures on a television screen to a doctor as he operates. This new system's sharpfocus screen is so bright it can be seen 20 feet away. And the device promises to elimi-
nate much of the hazard in surgery as well as store vital information for later consultation and record.

Life Savers. Not as comprehensive but already a veteran of 250 neurological operations is an IBM-Mayo Clinic system on duty at St. Mary's Hospital in Rochester, Minnesota.

To monitor patients, electrical detector signals are converted to digital coding, processed and printed out on a special typewriter to be scanned by a closed-circuit TV camera. The machine will show a patient's heart and breathing rates, arterial pressures, and body temperatures on a $14-\mathrm{in}$. screen while an operation is in progress. Meanwhile, a 5 -in. satellite oscillograph set up near the patient will give automatic electrocardiograph readings.

Warnings. Another team of Advanced Systems engineers borrow techniques used to analyze missile status before test firing. Their purpose: to have "carly warning" of changes in a patient's condition before clinical signs appear.

Sensors relay information to an IBM 1800 computer, report on an operating room screen warning of changes that could bring on an emergency in the seriously ill.

Nuclear. Still another biomedical life-

New medical tool developed at General Electric Research Laboratory is switchable magnet that can be furned on and off at will. Inserted gently down patient's throat (left), device is steered under fluoroscopic guidance to spring of open safety pin, then switched on. Pin can now be furned around and cautiously removed blunt end first.

Both permanent and electromagnets are represented in GE's new devices for retrieving swallowed ferrous objects. When permanent-magnet instrument being held by Miss Betty J. Drumond won't suffice, "steerable" magnet held by Dr. Fred E. Luborsky is called on to recover objects from previously inaccessible regions of the stomach.

Some advances in medical electronics fall in the evolutionary (rather than revolutionary) category, with recent improvements in X-ray equipment a prime example. X-ray installation at right dates from the late '20s and consists of a vertical lluoroscope in conjunction with a radiographic table, with the same power source being used for each.

Note that over-table tube is still of the non-shockproof type, with exposed high-tension leads.

Modern X-ray installation (at left) conceals X-ray fube in rayproof body of enclosed table, while image is now made thousands of times brighter by means of image intensifier on deck extending across table. Further, over-table X-ray tube is supported on telescoping column, in turn suspended from overhead carriage traveling on ceiling racks. Resulting arrangement permits rapid positioning and angulation of X-ray tube.
saver supplying emergency information is nuclear. A surgeon may need to know before an operation if a patient needs a transfusion, what kind of anesthetic may be hest, and whether or not the heart is getting enough blood.

To answer these questions, Picker X-Ray built a machine it calls a "Hemolitre." This unit shows just how much blood is circulating in a patient, information that can mean the difference between life and death in heart cases, serious surgery, or an automobile accident emergency.

Picker does it by tagging a small amount of serum with a radioactive substance such as Iodine 131 which is then injected into a patient's bloodstream. A few minutes later, a small sample of blood is withdrawn. The Hemolitre then calculates the radioactive potency of the blood before and after the injection, as well as the radioactivity of the serum itself.

This information is then fed into a computer which spins its electronic gears and ultimately reveals what the doctors want to know on its front panel.

Chair Is Examiner. Philco isn't that formal. Their engineers at Western Development Laboratories division at Palo Alto, California, have developed a diagnostic chair. Once a patient is comfortably seated, the chair picks up respiration rate, pulse rate. heart sounds, and electrocardiograph readings, then records the data on graph paperall without the patient's knowledge!

While the Philco sensor chair borrows its tricks from space research, a new development at RCA was once in the Army. The image amplifier, adding amplification and TV skills to the already powerful electron microscope, is a direct descendant of the World War 11 "Snooperscope." Combined with an image orthicon, it gives 50.000 times the light gain of the conventional studio camera.

The very intense intensifier can now see and record images too faint to be seen by an electron microscope alone. and it will even record them for TV tape or film playback. Honorary RCA Vice President Dr. Alfred N . Goldsmith calls the new amplifier "among the most powerful and useful electronic de-

Tuning in on the body's ills

Electronic medical system devised by Honeywell (right) can simultaneously measure, record, and display a wide range of functional changes that can occur in any patient. Main elements of system are KP-731 multichannel oscilloscope (top right), 1508 Visicorder (middle right), and 8100-II FM portable tape recorder/ reproducer (top left). Also recording data for later playback is the Mayo Clinic-IBM radiation scanner (below, right). Unlike ordinary scanners which produce a paper chart or film image, the Mayo-IBM system records all data on magnetic tape for computer processing, thus giving doctors a clearer view of images painted by radioactivity.

vices for biomedical applications known." Dr. Goldsmith is so enthusiastic about the amplifier he hopes we will one day improve electron-optical powers to the point where sequences of nucleic acids will be seen, classified, and their significance visually decoded.

Living Color. Probing even more deeply into human body secrets is the Picker MagnaScanner, a new machine that will scan inner organs and glands in both black-and-white and color. Mounted on the end of a beam on a scanner that can be rolled across the room and wheeled right up to a patient's bedside, the machine scans radioactive material inside the body.

A photorecorder picks up a black-andwhite picture of the organ or gland involved at the same time a multicolor dot recorder pictures the same areas in eight colors. The two systems, black-and-white and color, are designed to supplement each other, showing different versions of the same organ to the diagnosing doctor.

Already in use at Cedars of Lebanon Hospital in Los Angeles, the scanner pictures a patient's liver, spleen, pancreas, parathyroid, brain, heart, lungs, thyroid, kilineys or spine.

Sound Tells. Sound waves can diagnose, too. Doctors at the Albert Einstein Medical Center in Philadelphia say a good many elderly patients cannot take prolonged X-ray examination, so a medical-engineering team

built a machine that scans people with sound waves. High-frequency sound cites vascular disease, particularly hardening of the arteries, by photographing an artery blocked by de-

Ultrasonic waves at a frequency of about 2 MHz reflect from body tissues, register an image on an oscilloscope, and are then photographed for future records.

Skin Changes. Even a more revolutionary diagnostic tool is one that spots disease by skin-temperature changes.

Called thermography, the technique hinges

Device above records knee motion, passes findings on to computer for analysis. Knee in photo is model.
on the theory that the average internal temperature of the body remains pretty much unchanged if a person is healthy. Skin temperature, in contrast, fluctuates, depending on both internal and external factors.

At the Einstein Medical Center, physicians scan skin surfaces with infrared radiometers to cite internal disturbances. The method calls for rapid, high-resolution infrared scanners and very basic scientific know-how to be able to accurately analyze. But in spite of the revolutionary aspects of the new technique, it has already won its colors by early detection of some types of cancer and vascular troubles.

Model Organs. For the new electronic internists to completely rule out diagnostic error, the modern doctor applying the techniques must know more about the workings of the human body, still enigmatic in many respects. This information IBM and University of Mississippi School of Medicine engineers and physicians try to supply. Borrowing from space science they successfully simulate body organs with a computer.

Feeding all known information along with mathenatical descriptions of body organs and systems into analog and digital computers, they simulate such organs as the human lung, kidney, and heart.

One model of a kidney has already afforded doctors a clearer comprehension of the relationship between kidney function and high blood pressure. And they hope to learn more about arterial blood pressure, blood flow, and blood composition through a mathematical model of the circulatory system.

For years, doctors have tried to discover how kidneys control rates at which substances are eliminated or reabsorbed into the body. To date, they have only theories, but they now hope to solve their problem by building a mathematical model. The computer can then show which theory best simulates actual function.

The Body A System. Dr. Arthur C. Buyton of the Mississippi School explains the work by saying he believes the body the best engineered and most complicated system known. Since it is controlled by several hundred patterns, only a computer, he thinks, can aid in understanding its workings.

To discover why elderly women fall and break a hip more often than men, Moss Rehabilitation Hospital in Philadelphia has carried out another study. Two hundred women clad in shorts and wired to an electronic machine, walk across a "copper" carpet. Six muscular movements are recorded: the angle of each hip, knee, and ankle joint, plus muscular potentials during five walking positions.

Each of the motions is then measured electronically with the thought that if the doctors can find why the women fall they may discover a preventive.

Pain Cure. For the study, analysis, and diagnosis of the human body and its complaints, the new biomedical engineering has already proved revolutionary in its promise to rule out human error. But so far it has come up with few cures.

One, however, seems so extraordinary it may well eclipse any medical process yet known! While not exactly a cure, it promises to relieve severe pain, the kind associated with diseases such as cancer and serious injury to the nervous system.

A Dime Helps. Smaller than a dime, the miniature device can be implanted near the spinal cord. Here, a mild, non-painful stim-
(Continued on page 116)

It takes only a few hours to install a modern radio in the case of an antique telephone, but you'll end
\square Time was when telephones came in wooden boxes with cranks and earpieces. Mounted on the wall at some level or other, the then new-fangled creations could be utilized only with a preposterous amount of stretching or stooping-and only if the party line wasn't engaged.

Today, most of these phones have gone the way of the Stanley Steamer, though a few still lurk in attics and antique shops (the one in the photos was picked up at a country sale for a five-dollar bill). And though their days as telephones are over, such oldies can be returned to service in a way grandpop would never have dreamed of -as a conversation-inspiring cabinet for a table radio.

Strip Treatment. The old oak wall telephone in the photos took its first steps toward its new role when it was dusted, then given the strip treatment. All of the old wiring and small parts were removed from the inside of the main case. leaving only the box and the exterior paraphernalia.

The front-hinged lid of the telephone came off when we removed the screws from
one side of the three brass hinges. We then cleaned up the main cabinet and the wooden back, removing a variety of grease, pencil marks, and stains. What we didn't touch, of course, were the dents and scratches (remember, we wanted this to be an antique!).

Almost any long and narrow radio chassis could have gone into the telephone cabinet. The type or age of the radio really made precious little difference as long as the radio worked and would fit in the main compartment. Though we were tempted at one point to use a small, battery-powered transistor job, we eventually settled on a new G-E TI220A AM/FM table model (which, incidentally, uses an AC/DC circuit)

Trial Run. Once the etched circuit board had been removed from the radio's plastic case, we temporarily lined up the chassis and marked the mounting holes for its controls. Since we wanted to mount the dial plate separately, we cut it free from the cabinet with a hacksaw blade. Having smoothed off the rough edges, we laid the dial on the side of the telephone case, carefully traced around it, then slid the radio chassis into

Slide-rule dial in radio author used was permanently affixed to plastic cabinet, so author carefully sawed it out with hacksaw blade. Dial could then be fitted into cutout in telephone box.

up with plenty to talk about and a lot to listen to.
position. Fortunately, we found there would be plenty of room to mount the chassis in the telephone compartment and also to fasten it to the dial.

Masking tape was placed on the marked edge of the antique cabinet to serve as a guide line for the dial cutout and to protect the case against possible mars and scratches. We then drilled two $1 / 2-\mathrm{in}$. holes on opposite ends of the masked area to start a small saber saw. Since the oak case was very hard, we were careful not to feed the power saw too fast.
Plastic Grille. We mounted a 4 -in. speaker at the bottom of the telephone case, having first drilled several $3 / 8-\mathrm{in}$. holes and then covered them with a small piece of plastic screening. The line cord was passed through another $3 / 8-\mathrm{in}$. hole at the speaker end of the cabinet, and a knot was tied in the cord at a point just inside the cabinet to secure it against accidental stress.

Next, we replaced the circuit board in the cabinet and marked the chassis mounting holes on the wooden base. This done, we removed the chassis and drilled two $1 / 8-\mathrm{in}$.

Photos above show how radio was positioned in telephone box; view af left shows $3 / 8$-in. holes in one end of box for speaker grille and line cord. Varnish was later applied to telephone box to spruce up its appearance.

By homer l. davidson
mounting holes. Wood screws and spacers were used to fasten the chassis to the telephone base.

With the plastic dial in the new opening. we drilled two mounting holes at either end so the dial could be fastened to the telephone cabinet. The dial was mounted in place and the radio chassis was then bolted to the dial itself.

Finishing Touches. With the project almost completed, we then soldered the wires from the output transformer to the speaker voice-coil terminals and taped the FM antenna wire to the inside of the telephone cabinet. After the radio had been mounted and tested, we sealed the dial in place by squirting rubber seal around the dial.

Later, we removed the telephone bells, front mouthpiece, and hand phone hanger from the cabinet and spray-painted them with black enamel. When they were dry, we remounted them in position, then touched up the telephone cabinet proper with two coats of varnish. And last of all, we sat back for some real modern-time Party Line Listening!

WThy fumble around in your photo darkroom trying to read the markings on an enlarger lens or a print timer? The time you spend in your darkroom will be much pleasanter if you install a very simple lighting system using a few inexpensive parts, most of which can be salvaged from an experimenters "junk box." Even if bought new they cost little.

The actual sources of illumination are a couple of pilot-light assemblies with red jewels and No. 47 miniature bayonet-base lamps.

These fit neatly inside $35-\mathrm{mm}$ film cans. The holes for them are made in the can with an ordinary penknife, the metal being very soft aluminum. One can is mounted on the pivoted safe-light arm of the enlarger by a short piece of brass or aluminum, which is bent to throw the light upward to the rim of the lens. The usefulness of the filter is not impaired at all: the whole assembly swings back and forth smoothly. The other can is mounted over the face of the print timer, pointing downward.

The lamps are powered by a 6.3 -volt filament transformer which is enclosed in a small wooden box at one end of a board used for a base-the front portion of the base supports the timer itself. The various dimensions of the box are adjusted to suit the size of the timer. The top of the box holds a line switch and four binding posts; the right side, a single AC outlet-for the timer's AC plug.

The light for the timer dial connects to one pair of binding posts, the enlarger-lens light to the other. Lamp cord is fine for the
purpose. A single pair of posts would serve just as well, since the lamps are in parallel, but the extra pair is handy if still another light is wanted, perhaps to illuminate a clock face or a paper safe. There is absolutely no shock danger from the low-voltage wiring powered by the filament transformer.

Placed next to the enlarger, the timertransformer unit is very convenient to operate. The bright red jewels end all squinting, yet do not fog the fastest black-and-white enlarging papers.

The shocking truth about the bitter battles that may determine the future of every Ham and CB operator in the United States

- "ti's war!" The words of a militant prafessional protest leader? Hardly. Fact is, they were grumbled only recently by a fellow radio operator-a normally quiet and bookwormish chap who probably thinks twice before he swats a fly. But this time he had good reason to be infuriated. And his sentiments are typical of those being muttered in radio circles throughout the country.

Several factors precipitated his declaration: first, the seemingly hostile attitude towards Hams and CBers by the Federal Communications Commission; second, the strained relations between the American Radio Relay League and Hanns; third, the growing realization among operators that they might well have to fight to defend their operating rights and privileges!

The battle lines are most definitely drawn; wits are being sharpened right this minute! But what are the issues? What is at stake, and what brought on this unusual battle royal? Many of the facts have never been re-vealed-until now, that is.

Down The River. It is believed by some that the Ham radio situation began at a
private meeting in New York between the FCC and the executives of the ARRL and QST (the ARRL's official publication). With a major international radio frequency allocation conference looming on the horizon, the FCC regretfully reported that some of the new African nations were complaining about the lack of radio frequencies for their use; possibly they would try to steal the Han frequencies. If such a thing actually came to pass. Hams throughout the world would blame the FCC because it permits U.S. citizens to get Ham licenses with a minimum of red tape. exams, and waiting time. As a result the U.S. has amassed a tremendous number of Hans per capita-many of them rotten operators who have earned (for American Hams in general) an international reputation as obnoxious loudmouths running far more power than is necessary.

The FCC was on a spot and felt that something would have to be done to show the rest of the world that U.S. Hans weren't so bad as to cause the loss of Ham radio frequencies. The ARRL was quick to accept the challenge of coming up with some sort of

solution to save face for the Commission.
The ARRL brass itself had long been unhappy with many of the new breed of Hams and said it had "increasing concern . . . as to whether the basic purposes and objectives of the amateur radio service, particularly those relating to technical qualifications and proficiency," were being achieved. The League claimed that many Hams "just go out and buy their equipment, plug it into the light socket, connect an antenna and operate."

All of this was far below the dignity of the pompous and tradition-steeped League executives, many of whom still live in the days when operators wound their coils on oatmeal boxes and put India ink on crystals to change frequency. It seemed to them that this would be the right time to weed out these new rascals by either kicking them off the air altogether or at least openly branding them as second-class operators.

The Plan. Back the ARRL folks went to Connecticut and into the conference room for secret talks. The result of the brainpicking session was a mish-mash of ideas which had been previously rejected by the ARRL and the FCC, only now the plan was rearranged and dubbed with the new title of "Incentive Licensing." Worded in fancy legal terms, it was rushed down to the FCC on a silver platter for prompt approval. QST, having the uneasy feeling that the plan might not sit too well with some ARRL members, gingerly tried to explain Incentive Licensing to its 105,000 reader/members. The result was an upbeat explanation intended to sell
an idea which had few selling points (no mention was made of the FCC's inspirational role in its creation).

Stripped of the fancy frills, the plan suggests creation of a new "elite" class of Ham license to be called the "Amateur First Class License." This license would be available only to those Hams who had held an Advanced, General, or Conditional Class License for at least one year.

To get the new license, the Ham would have to take a new written exam which would be harder than his previously taken test: he would also have to pass a 16 -wpm code test (existing General Class tests call for 13 wpm). Only operators of this new license class (or those who held the coveted "Extra Class" license, which is harder to obtain) would be allowed to operate a phone station on the prime DX frequencies below 50 MHz (160 through 10 meters). Those Hams who couldn't pass the exam would be forced to jam into a small band of phone frequencies or use CW (which, for all practical purposes, is now obsolete).

In addition, all phone privileges, for Novice operators (the 2 -meter band) would be withdrawn. To round the plan off, the FCC was asked by the ARRL to devise "distinctive" call-signs for each particular class of license so that Hams would immediately be able to ascertain the prowess of fellow amateur operators.

The Prospects. The FCC's acceptance of these ideas would see thousands of long-time DX phone operators unceremoniously evicted from their operating haunts until (and un-

It's War!

less) they could pass a rougher exam than they had ever before taken. (Fact of the matter is that many Hams couldn't pass the very exam they took to get their original license if a year or so had elapsed.) Their only hope would be to cram for the new exam and, failing that, squeeze onto the few remaining frequencies or pack their DX gear in mothballs and migrate to the local-coverage VHF bands-where the FCC was to reserve them some "exclusive" frequencies.

The regular VHF operator, already plagued with split-up bands and class distinction between General, Technician and Novice class operators, would then be faced with the prospect of slicing up the pie for yet another group. For new immigrants from the lower bands would be now joining the VHF fraternity by taking away the regular VHF operators' best frequencies. The idea, of course, was to force the Technician class VHF operator to get the incentive to step up his code speed and pass a General Class license which would permit him to again operate on his old frequencies.
Not On Your Life. The grass roots reaction was instantaneous and rather violent. Enraged Hams flooded both the ARRL and FCC offices with highly impassioned messages, all carrying the same theme, namely, that they weren't buying even one little bit of this proposal. CQ magazine, an independent Ham publication, offered its own plan for upgrading the American Ham, but the damage had already been done. The ARRL plan had been formally submitted to the FCC. And Wayne Green, Ham radio's angry young man (and publisher of another Ham publication, 73, promptly sailed into the ARRL with one of his famous tirades over that one.

With cannon bombarding it from all sides, the ARRL found itself in a rather embarrassing situation, especially since the FCC unexpectedly decided to play it cool and not rubber-stamp Incentive Licensing into the law of the land. The League was simply left to hang by its thumbs while the folks in Washington pigeon-holed the idea and announced that they were "thinking over" the plan's alleged merits.

The League landed out in the cold with many Hams, too. In fact, when mid-1965
membership stood at 105,000, the I.cague had confidently predicted that mid- 1966 rolls would fatten up to about 108,000 to 110,000 members. In actuality, membership had shriveled to less than 80,000 by mid-1966!

Panic Button. Not only had Hams stopped renewing their memberships in the League, but the proposal had triggered one of the most horrendous business slumps Ham radio had ever known. The proposal was also the best explanation for one of the most severe drops in license applications for years.

The ARRL hastily engaged a public relations firm to find out what had gone wrong and what had happened to its membership. The poll-takers in turn announced that the "crux of the situation" was that "if the people are indeed representative, then too many Hams just do not feel the sense of personal relationship with the League they want to feel." In other words, most Hams just couldn't understand why their good Ham buddies at the League would have officially proposed Incentive Licensing without having taken the minor courtesy of asking members for their opinion beforehand.

Meanwhile, the League itself explained causes of non-renewal thisaway: that the League was "out-of-touch" with the operators' interests; the operator simply "had not gotten around to renewing;" and the operator was "just not active" any longer.

By the fall of 1966, things had gotten so desperate at the League that QST announced what appeared to many to be an almost pathetic last-gap measure to recapture the badly fumbled ball; a panacea for regaining its composure, lost prestige, and members. The new idea, "Ham Quest 67," had the League pleading (in QST), "Strength through unity-that's what is needed."

Carefully skirting any mention of the dreaded Incentive Licensing plan, the ARRL rehashed all of the reasons why it's really pretty wonderful to have the kindly ARRL folks lending their prestige to Ham radio and watching out for the interests of the operators. Part of "Ham Quest 67" included sending out "ammunition to be used in convincing non-members that they ought to join the League . . ," offering prizes for the member or affiliated local club bringing in the largest number of new members.

The FCC? Yes, it's still thinking over the proposal. But it also offers no inkling as to when (if ever) a decision will issue forth.

The way things stand now, Han radio has been shaken to its foundations. Operators are angry and confused. The industry is pulling in its belt a few notches. And the FCC (still meditating the Incentive Licensing plan and seemingly unaware that Ham radio has been hurt badly) has managed to find the time to turn its helping hand towards yet another radio service.
The CB Scene. In Septeniber of 1966, the FCC sent a letter to all CB manufacturers expressing the FCC's unhappiness with the CB service. The letter innocently hoped that the manufacturers (who have a $\$ 50$ million per year thing going in CB) "will assuredly agree . . . that . . a healthy state of affairs" hardly exists. Manufacturers were told that unless things got better the FCC might consider putting a temporary freeze on new CB licenses.

Established with the best of intentions and the worst of planning, the CB service was

created by the FCC on a frequency band long regarded as useless for communications because of the fantastic noises generated there by industrial, scientific, and medical electronic gadgets. Even Hams, some of whom can turn almost anything into a useful communications tool, had precious little use for it. The band was "given" to CBers much as a useless scrap of meat is tossed to a dog, except that the FCC made it clear that the meat could be eaten only in certain ways, and only without enjoyment. The Commission announced that CB communications could not consist of "hobby type communications" or "idle chit chat."

Biting The Mand. As had been feared, the CB operator picked u_{j}) on the CB service as a great way to be a "sort of" ham operator, using CB sets as telephones in a gigantic party-line gossip and bull-throwing festival. This sent the FCC into apoplectic convulsions and brought forth upon the users a number of purges which saw new rules
added, old ones strengthened, fines invoked, licenses revoked. and even the old ogre of the Federal Trade Commission trotted out to frighten manufacturers. Despite these efforts some 20,000 new license applications still arrive at the FCC each month, and the present license records show about 800,000 citizens licensed and using about $21 / 2$-million transceivers (most of them incorrectly, one can presume).

But what gives? Wasn't the FCC created to control radio communications in the United States-a task that includes issuing licenses and making and enforcing laws in the public "interest, convenience and necessity"? True. But to enforce those laws it receives a grubby little pittance with which it must also run a huge monitoring network to tune in on hams, CBers, commercial broadcasters, business-band operators, police, ships, aircraft, and dozens of other radio stations.

Although the FCC doesn't admit it openly, some officials have privately confessed that the money available for enforcement purposes simply isn't enough to adequately foot its monitoring network. Nor is it sufficient for the Commission to even attempt to enforce most of the rules which it grinds out in an almost endless procession. And therein lies the rub.

CB is not only a newcomer to the family of radio services, it's a difficult one to handle at hest. Worse yet, it's considered to be nonessential (for the protection of life or property or for informing the public, that is). The FCC perhaps feels that if it can't get more money, maybe it would be better off with less radio services-and guess which is at the uppermost tip of the totem?

It's a pity that the FCC can't keep some of the money it takes in on fines and licenses. CBers alone toss Uncle Sam about $\$ 160,000$ per month in license fees. The money comes into the FCC alright, but it goes right out for placement in the government's kitty where it is doled out in support of European junkets for VIP's, insect research, and programs to lull farmers into not growing wheat. Maybe a little of this money pumped into anemic FCC veins would give it stomach enough to carry on in the traditions of the Great Society.

The most ludicrous thing about the whole CB "dilemma" has yet to be mentioned. For in spite of all the FCC's bellyaching, nobody would be any the worse if CBers were simply left alone to talk themselves blue

It's War!

wouldn't this be in the public "interest, convenience and necessity"?
Holding The Bag. Yet the FCC, staffed by political appointees and public servants, insists that it is acting in the best interests of the American public. And despite the abject poverty under which the FCC must exist, when the COMSAT communications satellite arrived on the scene an Act of Congress was rushed through to establish a new FCC division just to handle the single satellite. (They probably haven't been too busy in the new division since the rates are so high that even the TV networks don't use it very often.)

In the meantime, the American public has watched the FCC give token interest to the rigged quiz shows which duped 190 -million citizens (threats to put a freeze on broadcast station licenses were not heard). Users of essential communications services are crowding each other off the air due to lack of sufficient channels, yet the FCC insists on reserving 470 MHz worth of UHF-TV space for a mere 250 broadcasters. And on the marine bands, casual listening discloses opulent yachtsmen broadcasting language so salty it would bring a blush to the face of even the crustiest old navy Chief.

Are these problems of a lesser nature than those facing CB or Ham radio? Are the broadcasters truly the "darlings" of the FCC (as has been suggested for years)? Or is it that the FCC is so understaffed that they just haven't seen these problems or so underfinanced that they can't afford to do anything about them?

Regardless of the answer, one gets the impression that the FCC might perhaps have had a master plan right along which would explain some of its activities. A hint of this was perhaps dropped when FCC Commissioner Kenneth A. Cox recently stated that if all other alternatives fail to sufficiently relieve the present congestion, additional frequencies would have to be given to needy services. This, he said, would be accomplished by a complete reorganization of the radio spectrum (Cox likened it to "unscrambling an egg"). Obviously, new frequencies can't be created by a wave of the FCC's magic wand. They would necessarily have to be taken away from "non-essential" radio service.

It's Warl Yes, it really is a war, still a cold one at this point but warming up by the minute! Hams are thoroughly disgusted at being made fools of by the ARRL, and even more annoyed with the FCC which (for reasons unknown to the operators) is still fumbling with the Incentive Licensing scheme. The ARRL is wobbling around on a shaky pair of legs. Ham and CB manufacturers are wondering where they go from here, and CB operators are still trying to figure out the justice in their paying $\$ 8$ for a CB license only to be divested of their rights to freedom of speech and the pursuit of happiness.

One guess is as good as another as to where the next battle will be fought. If the FCC would ever attempt to shut down these services, it would undoubtedly be faced with the specter of three million bootleg operators jamming the reallocated frequencies. And could the rumor be true that three million CBers and Hams intend marching on Washington, right up to the FCC's Ham/CB office (above a supermarket, by the way) to sing "We Shall Over-modulate!"?

Bushing for TV Line

To bring TV twin-leads into the house with low-loss and without letting cold air in, make sealed feed-through bushings from polystyrene tubing. For 300 -ohm line, bore a $1 / 2 \mathrm{in}$. dia. hole through window frame and push a length of $1 / 2-\mathrm{in}$. O.D. polystyrene tubing through the hole, allowing about $11 / 2 \mathrm{in}$. of tubing to project on each side of frame. Push line through tubing. Seal tube ends by heating with matches or a cigarette lighter, and, wearing a glove to protect the fingers, pinch the tube ends firmly together. Hold until plastic sets. Works fine for long-wire antenna lead-ins.

日 Privacy is almost a thing of the past. Nearly every day the papers detail some new horizons in eavesdropping, from the phone company listening in to subscriber's conversations to executives bugging the rank-and-file employee's washroom. And of course, in this modern era of recording tape and the scissors, even the most innocuous of conversations can be rearranged into the most damning of evidence. What to do? Nothing. You can scream and the most you'll get is a few sympathetic words from your Congressman, but not much else; for the poletzi you complain to are up to their ears in wiretaps and bugs, the Feds have a sorry record of eavesdropping
prosecutions, the phone company has been getting away with it for at least 30 years, and your Congressman's indignation dies with yesterday's headlines.

About the only thing you can do is fight to protect the truth; make certain that what's used against you isn't the result of some brilliant tape editing. Make certain that when you tell your neighbor "I need some money for termite poison" it doesn't come out "I poison for money."

And you can easily protect yourself with the Tie-Spy-known in the trade as an 007 FM mike. Just clip on the Tie-Spy and your words are broadcast to a nearby FM receiver,

where it can be transferred to tape in an unedited version of what was said.

As shown in the photographs, the Tie-Spy consists of an miniature, very-short-range FM transmitter and a microphone that appears to be a high-class diamond-studded tie-pin. You simply clip the mike to your tic (naturally you're out of luck if you wear bow ties), place a battery in the transmitter, and you're on the air. A nearby confederate can monitor your conversation on an FM portable and handle the recording.

Construction. The unit shown is housed in a plastic case approximately $21 / 8 \times 11 / 4 \times$ $13 / 4$ inches. Actually it can be made smaller by using subniniature components. But to keep the price down to rock bottom, we have used standard components available from Allied and Lafayette Radio (among others). If you want to squeeze it into an olive by all means do so, just use the equiv-

While the tie-bar may not be the most in men's jewelry it does the job-it's the microphone that counts the most right here.
alent miniature values-nothing is really critical except the coil.

In a similar vein, the sound quality is exceptionally "tinny"--readable but "tinny." This is due to the low-impedance loading of the high-impedance crystal tie-clip mike we used to keep costs down. If you want to go for a few extra bucks get a better mike, a low impedance job-say a dynamic type from 500 to 500 ohms. You can even try a small transistor radio speaker, or might even add a matching transformer. As we said, nothing is really critical.

The electronics is assembled on a $15 / 8 \mathrm{x}$ $21 / 16$ inch section of perf-board. If you slightly round-off the corners the perf-board will just fit into the plastic case.

Start assembly by mounting tuning capacitor C5 and oscillator/antenna loading coil L1. L1 is made as follows: Cut off a three foot section of AWG-18 solid enameled wire and tensilize it by clamping one end in a vise and pulling on the free end until the wire goes "dead slack"-unless this is done
the coil will unwind when you release tension.

Using a $3 / 8$-inch drill bit as the form, wind seven closewound, tight turns. Remove the coil from the form and stretch the first three turns so the distance from the "start" to the third turn is exactly $3 / 8$ inch. Scrape a small bit of insulation from the start of the third turn (actually what we call the second turn), and solder about an inch of wire to this

> Coil is quite critical since it determines the transmitting frequency. It must be right on the button.
tap. As shown in the schematic, the tap connects to the "top" of C5 while the "start" of the coil connects to Q2's collector. The free end of the coil will be connected later to the antenna.

Flea clips or Vector T28 push-in terminals are used for tie points and supports. To mount the C5-L1 assembly, push in a set of terminals directly under C5's solder tabs and install a very short support lead from C5's tabs to the terminals.

To insure frequency stability C6 should be the silver mica type or its equivalent. Space gets a little tight on top of the board so miniature resistors ($1 / 10$ or $1 / 8$ watt) and capacitors are suggested. The components on the bottom of the board can be "standard" size ($1 / 4$-watt resistors, etc.).

We can only be certain the project will work with the transistors specified in the parts list, do not substitute another type for the specified Q1 and Q2.

Battery Power. The power supply has no

Either $1 / 10$ or $1 / 2$-watt resistors can be used here on under side of perf-board.

on-off switch. To start the transmitter you simply clip in the battery. To turn the unit off you remove the battery. The specified battery will give an average of 35 hours service, depending on the "freshness" and frequency of use. Since there is no standard battery holder you have to make your own. The battery holder is simply two L-brackets fashioned from scrap aluminum (an old Minibox) or copper. The L-brackets are mounted to the board with 2-56 machine screws. Connection is made to the clips by soldering directly to the head and nut. Note

Circuit is simple but you must remember that wiring at 100 MHz is critical-all leads to Q2 and Ll-C5 must be kept short to get proper operaticn on the FM band.
that the negative clip has a hook at the end. The battery's negative terminal is slightly recessed into its case, so to insure connection you must form an $1 / 8$-inch "hook" which will bite into the negative battery terminal.

The Mike and Antenna. The mike is supplied with a mini-plug. Cut off the plug, unbraid the shicld-forming a tinned twisted lead with no free strands-and solder the mike cable directly to a ground terminal and the input to Cl . The antenna consists of 12 inches of very-thin stranded wire-AWG-22 or thinner-soldered to L1's free end.

Drop the unit into the plastic case, leaving the hinged cover open. Mark the points where the mike and antenna leads will pass through the case. Remove the transmitter and quickly press a hot soldering tip into the edge of the case at marks for the mike and antenna leads. The case will melt under the iron, forming the openings for the two leads. Don't press down hard or you'll go
(Contimued on page 114)

Tight-wound partion of Ll is a loading coil for the short antenna-the spread portion funes with C5. Leads that connect to the base, emitter and collector of Q2 should be kept as short as possible (a normal VHF wiring technique). Those to Q1 aren't as critical. Transparent plastic box protects delicate parts-specially $\mathbf{L I}$ and C5-from damage.

Personal $\mathrm{Hi}-\mathrm{Fi}$

> A complete tonearm, preamp, earphone-amp combo, this setup is ideal for stereo on the private side.

By Art Trauffer

Build this novel amplifier-in-miniature and you'll no longer have to fire up a highpowered stereo amplifier just to drive a pair of headphones. This little stereo-headphone driver will cost under $\$ 3.00$, entail less than an hour's work, and yet give you beautiful, clean, wide-range headphone reproduction. Utilizing the Euphonics Miniconic semiconductor stereo phono cartridge, the TA- 15 tonearm and the PS-15 power source, this simple setup is perfect for personal hi-fi.

The photo below gives some idea of how
easy this little amplifier is to put together, and the schematic diagram reveals how few parts are involved. No volume controls are used because headphone volume is just right for persons with normal hearing, and the stereo balance is good.

Construction. Note that the two aluminum panels, screw-fastened to the wooden base, act as a battery holder for the size-D flashlight cell and automatically connect the cell to the circuit. Phono-input jacks J1 and
(Comtinued on page 116)

Aluminum panels attached to wooden base form sides of unit and also serve as battery holder. Jacks need not be insulated.

One of the problems with home-made phono amplifiers is that they are invariably flat-good circuit design can make even the cheapest transistor audio amplifier flat to within $\pm 3 \mathrm{db}$ throughout the usable portion of its frequency curve. You would think this feature would be desirable, but it's not necessarily so when you take a hard look at the signal supplied by the phono pickup. The unequalized output voltage curve for a typical ceramic cartridge extends from 50 to $10,000 \mathrm{cps}$. peaks at ahout 300 cps , and falls about 6 dh per octave at 50 cps and 15 db per octave at 10.000 cps . Also, the impedance of a ceramic pickup decreases as the frequency is increased. On top of this non-linear characteristic the signal is
further complicated by the record manufacturers. Recordings are deliberately made with reduced amplitudes at low frequencies. a relatively flat middle frequency range, and increased amplitudes at high frequencies due to manufacturing difficulties in the preparation of plastic platters. Therefore, a carefully designed preamplifier circuit is needed to boost the low-frequency signals, reduce the highs and match the ceramic pickup's impedance before passing an equalized audio signal to the frequency-flat amplifier.

Fortunately, the recording industry had decided on a recording equalization standard (R.I.A.A.) and the characteristics of ceramic pickups are almost universally identical with respect to frequency response and im-

Layout of the components on the perforated circuit board is not at all critical-bul watch ground connections if you take power from amplifier.
pedance output. Now, a preamplifier can be designed to straighten the frequency-output curve from a ceramic pickup's signal prior to being fed to a flat amplifier.

How it works. The schematic diagram for the ceramic-pickup preamplifier appears to be a basic conmon-enitter type using an $n p n$ small-signal transistor-except for the collector-base network (resistor R2 and capacitors C1 and C2). Resistors R1 and R3 provide fixed base bias. The amplifier's input impedance is made smaller than the pickup's impedance and Q1's current gain is made to vary inversely to the velocity response of the R.I.A.A. recording characteristics.

The negative feedback characteristics of the collector-base network does the equaliz-ing- Cl is the effective circuit element for frequencies between 30 and 500 Hz (cps); R2 between 500 and 2000 Hz ; and C2 above 2000 Hz .

The large amount of negative feedback reduces distortion and pernits the use of low operating current in the collector circuit. This is essential for a low-noise output signal. The fact that no equalizing network is connected in series with the base also helps reduce noise.

The low input impedance of the preamplifier permits hookup to all available ceramic pickups on the market today. Remember, unlike a vacuum-tube amplifier circuit, this transistor preamplifier depends on

the apparent input impedance mismatch for proper audio equalization.

Putting It Together. Parts layout, shown in photo, closely matches the schematic diagram. All resistor, capacitor and transistor leads terminate at fea clips. If you prefer not to use flea clips, make all connections by passing leads through perf-board holes and soldering underneath perf-board. Twisted wire leads can be used to connect to ceramic pickup and amplifier input terminals. Shielded cables should be substituted if hum level is high. Also, it may be necessary to connect a $10-\mathrm{mf}$. 6 -volt electrolytic capacitor across the power supply leads (watch polarity) if preamp taps power from phono's power supply.

Installation is not critical. Keep leads short and locate perf-board away from heat. A classical recording (with violins) can serve as a test record. Play the recording before and after modification-use your amp's $A U X$ input.

A Safe Connection

- When making a wire connection for your projects, cut two one-inch pieces from a halfinch rubber tube. Split these and put one around

each wire at the connection point. Then wrap some plastic electrical tape over all, and it makes a neat, safe job. This idea is not suitable for power or lamp cords.

Polystyrene Tubing Insulates Chokes

- To protect the metal ends of an RF choke from accidental contacts in a crowd-
 ed radio chassis saw a lengthwise slot on one side of a length of polystyrene tubing, and slip it over the RF choke. For straight-wound chokes, $1 / 2 \mathrm{in}$. O.D. tubing is about right, but for pie-wound chokes use larger tubing. Coildope or speaker-cement applied to wire leads where they enter tubing keeps tubing from slipping off choke. Or, heat the ends of the tubing and pinch them shut. Use color code to indicate value.

RADIO-TV EXPERIMENTER

INTERNATIONAL CRYSTAL MODEL C-12B

CB Frequency Meter

- It should he evident to every CBer that the FCC is bent on a real crackdown, for the monthly list of fines and forfeitures now runs several pages rather than several lines. And a quick perusal of the list shows that next to transmitted obscenities, off-frequency operation ranks near the top of the pinkticket list.

But there is really no reason why any CBer should risk losing his license because of off-frequency operation. For the truth of the matter is that any communications service shop or CB club shop should be equipped with a frequency meter.

A frequency check is difficult? Nonsense. With a frequency meter specifically designed for CB, such as International Crystal's model C-12B, it takes but ten seconds to check each channel. Equally important, operation is so simple the check could be performed by a child.
Twenty-three Plus. The C-12B is a hybrid (tube and transistor), battery-powered frequency meter specifically designed for the Citizen`s Band. It has 23 switch-selected frequencies plus a spare (the 24th position). In addition to checking frequency with a claimed accuracy of $.0015 \%$, the meter will also measure percent modulation and the transceiver's RF power output.

The meter is supplied with a separate pickup box (called the PK) that provides a dummy load for the transmitter and acts as an attenuator when the frequency meter is used as a precision signal generator. The meter's direct output provides an unmodulated signal (for alignment, say) of 100 microvolts; with the PK box in the circuit, the output at the end of the PK's test cable is one microvolt.

On The Beat. Block diagram shows how the frequency tests are performed. The output of a precise crystal-controlled oscillator is mixed (beat) with the transceiver's output signal. The difference signal below is first amplified, then rectified, and the resultant DC passed to a calibrated meter. The greater the difference frequency, the higher the meter reading. This, in turn, is interpolated into deviation from center-frequency.

Let's look at a practical example. Suppose you wanted to check out a channel-9 crystal. Setting the frequency meter to channel 9 produces an internal 27.065 MtHz signal. If the signal from the transceiver were off-frequency by 100 Hz , its output would be $27,065,100$ Hz . And when $27,065,000 \mathrm{~Hz}$ is heat against $27,065,100 \mathrm{~Hz}$, the output from the mixer will be the difference between the two fre-quencies-a $100-\mathrm{Hz}$ beat note.

This is then amplified, rectified and the resultant DC displayed on the meter as $100-$ Hz deviation. A special switch is provided that tells you whether the deviation is ahove or below center channel. If the signal from the transmitter were exactly 27.065 MHz , there would be no (zero) beat note and the meter would therefore indicate "0"-no deviation from center channel. The meter is calibrated from 0 to 3000 Hz deviation, with

Block diagram shows frequency measurement system. PK box samples RF signal fed into the dummy load-feeds it to mixer.

a special mark at the maximum permitted deviation of 1350 Hz .

The Acid Test. Is the C-12B reliable? Is it really a secondary frequency standard the CBer and the service shop can depend on? To find out, we checked the C-12B against a Hewlett-Packard counter with a known accuracy of 1 Hz . The results are shown in the table. Column 1 shows the channel, col-

Channel	Frequency in Hz	C•12B Output	Error in Hz
1	26965000	26964971	29
2	26975000	26974990	10
3	26985000	26985002	2
4	27005000	27004992	8
5	27015000	27014992	8
6	27025000	27024995	5
7	27035000	27035002	2
8	27055000	27054986	14
9	27006000	27065014	14
10	27075000	27075004	4
11	27085000	27085018	18
12	27105000	27104979	21
13	27115000	27114984	16
14	27125000	27125000	1
15	27135000	27134951	49
16	27155000	27155002	2
17	27165000	27165009	9
18	27175000	27175002	2
19	27185000	27185004	4
20	27205000	27205016	16
21	27215000	27215003	3
22	27225000	27225019	19
23	27255000	27255037	37
24	No crystal provided (spare)		

Operating panel of the International Crystal C-12B (left) and internal layout (above) shows the major portions of this accurate ($\pm 100 \mathrm{~Hz}$) frequency meter for CB.
umn 2 the assigned frequency, column 3 the actual reference frequency of the $\mathrm{C}-12 \mathrm{~B}$, and column 4 the C-12B's error in Hz . Note that the error is less than the specified 100 Hz and in many instances less than 10 Hz .

Allowing for interpolation of the meter scale (which is calibrated in units of 60 Hz), the maximum error of the model we obtained would be considerably less than 100 Hz . Frequency drift from the moment of throwing the power switch to the moment of measurement (a few seconds) was less than 10 Hz , again keeping total error well within the claimed 100 Hz .

As far as the mechanical operation is concerned, things couldn't be easier. You feed in the transmitter's signal, set the mode switch to $R F$, adjust the level control until the meter pointer lines up with a scale mark, then switch to deviation. The meter then indicates frequency deviation instantly; total measurement time is less than 10 seconds.

Other Functions. To use the $\mathrm{C}-12 \mathrm{~B}$ as a power meter, you simply set the mode switch to $R F$ and turn the level control full clockwise. The $\mathrm{C}-12 \mathrm{~B}$ then indicates the transmitter's output power, and in the unit we tested it does so with an accuracy better than the claimed $1 / 4$ watt. For example, when the actual power fed into the unit was 3.0 watts, the C-12B indicated an input of 3.2 watts.

Since the C-12B's meter is damped, a sustained word rather than a string of words must be used for modulation tests in order to permit the meter to rise to peak value. For example, when the speech input was a long
(Continued on page 118)

Exclusive with $R(A$....

ALTOTEXT faster, easier way toward a career in electronics

EXCLUSIVE WITH RCA. "AUTOTEXT," developed by RCA and introduced by RCA Institutes, Inc., is a system of programmed instruction, accurately planned so that as you read a series of statements, questions, and answers, you learn almost without realizing it! It's fast! It's easy! It's fun!

NEW TREND IN EDUCATION: Programmed instruction has been proved with thousands of students. People who have had trouble with conventional home training methods in the past can now master the fundamentals of electronics almost automatically!
PROVE IT TO YOURSELF NOW! An interest or inclination in electronics is all you need. RCA "AUTOTEXT" will help you do the rest. And the future is unlimited; the jobs are available! The important thing is to get started now!
COMPLETE COURSE AVAILABLE. RCA Institutes now offers you a complete Home Training Course ("Introduction to Electronics") using the "AUTOTEXT" method. You get a complete set of theory lessons. service practice lessons, experiment lessons, and all the kits you need. You'll learn faster with less effort!

COMPLETE SELECTION
 OF HOME TRAINING COURSES

- Communications	- TVServicing Electronics (with new transistorized
- FCC License Preparation	TVReceiver Kit)
- Mobile Communications	- Color TV Servicing
- Automation Electronics	- Transistors
- Automatic Controls	- Electronics Fundamentals
- Industrial Applications	- Electronics Fundamentals
- (in Spanish)	
- Nuclear Instrumentation	- Computer Programming
- Digital Techniques	- Drafting

- LIBERAL TUITION PLAN
 FOR ALL HOME TRAINING COURSES

This plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. If, for any reason you wish to interrupt your training, you can do so and not owe one cent. No other obligations! No installment payments required.

- YOU GET PRIME QUALITY EQUIPMENT

All kits furnished with home training courses are complete in every respect and the equipment is top grade. You keep all the equipment furnished to you for actual use on the job, and you never have to take apart one piece to build another!

Licensed by the New York State Department of Education.

ATTENTION VETERANS!
 All RCA Institutes Courses available under new G.I. Bill

Classroom Training Available in New York City, and Cherry Hill (near Camden) New Jersey.
Send postcard for free illustrated book today! Specify home fraining or classroom training!
the most trusted name in electronics 350 West 4th St., New York, N.Y. 10014

You can add a Beat-Frequency Oscillator to just about any all-band receiver without digging into the chassis. All connections are external but you can get better shortwave reception with a direct connection.

by C. M. Stanbury II

Many receivers for the general public have a short wave band but no BFO (beatfrequency oscillator). Most hams today use either Morse code (CW) or single-sideband (SSB) voice (both of which require a BFO), and cannot be tuned in on receivers without a BFO circuit. But there is a solution. Go to a war-surplus dealer, purchase the lowest priced longwave receiver he has at hand, and you're in business.

Here's How. Just about all modern receivers, especially those which are intended for the general public, are put together using a superheterodyne circuit (not that there is anything necessarily "super" about the homeentertainment version of it). The signal from the antenna is picked up by the RF stage of the receiver-at the station's actual frequency. In the type of set we're dealing with here, little amplification takes place in the RF (radio frequency) stage. Instead it is immediately converted to a fixed intermediate frequency (IF), and usually centers on 455 kHz (kc). Because this narrow band of frequencies is fixed, tuned-amplifier circuits can be built much more economically.

Now if you had a receiver intended for amateur or communications listening, it would have a beat-frequency oscillator oper-
ating very near the intermediate frequency. The BFO is actually a miniature transmitter (oscillator) built into the receiver and putting out a microvolt signal. For example, in Lafayette's brand new HA-700 the BFO operates at either 452.5 or 457.5 kHz (and if necessary can be adjusted for any value in between). When a CW carrier is tuned dead on, it appears in the IF stage at exactly 455 kHz , beats with that BFO just 2.5 kHz away and in turn produces an audio note of 2500 Hz (cps). (1 kHz equals 1000 Hz , of course.) The dots and dashes are then easily readable (heard as dots and dashes).

What To Do? But we're forgettingyou've inherited a $S W$ receiver without a beat-frequency oscillator. So obviously what you must do is add a BFO to your present receiver. And because you are just a beginner, this must be accomplished in the simplest way possible. Which brings us back to that war-surplus longwave receiver. Most of these are blessed with a BFO which operates at the LW sets' own IF (somewhere below 200 kHz) and all will tune the SW rigs' IF. (Be careful-some were regenerative circuits not superhets.) By now I'm sure the idea is heginning to dawn on you. If not then consider this little experiment.

Put the two receivers side by side on a table. Pick out a station on the SW dial, then turn the set's volume down to nil but not far enough to turn the power off. Now tune the LW receiver to 455 . I. o and behold-there is your SW station.

Why? Well, because every inexpensive shortwave rig radiates slightly at its intermediate frequency. Whatever it picks up is rebroadcast at 455 kHz and your longwave receiver will pick this up. Of course you'll want maximum IF pickup. To obtain this, the two receivers should he connected to a common antenna. And if this still doesn't provide enough pickup, have a dualified technician hitch the SW IF's output directly into the LW's RF circuit. But we emphasize the person who does this must he fully qualified. If you try it yourself, the results could be "shocking." Anyway, in most cases the common antenna will do the trick.

Pitfalls. Now in setting up this system there are a few pitfalls to avoid. First be sure the LW receiver does tune to the IF-

that is, it must have a band covering the 400 through 500 kHz range. Next, be sure the LW rig you buy is war surplus and not a new one, otherwise you could wind up paying more than a regular Ham receiver would have cost. Sometimes the band switches on these old rigs act up, however, for amateur purposes, once the receiver is on that 455 kHz band, you shouldn't care less. On the other hand, this should knock down that price still further. For more exact details on price, pick out the appropriate dealers from their ads in this issue (and Literature Library), then write them.

There is one more thing to look out for. We said that the two receivers should be connected to a common antenna. But sometimes connecting the $S W$ receiver on the hookup will badly detune the LW antenna circuit. If this does happen, simply place a very small capacitor (not higger than $50 \mu \mu \mathrm{f}$ but the value is not critical) between the longwave lead and main antenna which in turn is attached directly to the SW rig. This effectively isolates the two tuning circuits. This is a must if you decide to connect into the IF amplifier directly.

All Set. So now you're all set for CW reception. You're also ready to receive single-sidehand transmissions hut these will require much more carcful tuning. A SSB signal is just like one using standard AM (amplitude modulation) except that one sidehand (which you won't miss) and the carrier have been removed. In order to hear single-sideband voice transmissions in an intelligible manner you must produce your own carrier within the IF. The BFO, of course, makes this possible. (Turn page')

Military-surplus longwave receiver (above) picks up the IF radiation and gives added selectivity for those crowded bands devoted to brass pounding. BFO in longwave receiver puts the dits and dahs back into the Morse code messages. Short wire from antenna post (right) is wrapped around outdoor antenna lead for capacitive coupling. Direct connection to last IF stage, through very-small-value capacitor, is better.

Using The BFO. However, in order for your BFO to act successfully as a substitute carrier two conditions must be met. First, it must appear in the IF, frequency-wise, exactly where the station's own carrier, if it had one, would be. Second, strength of modulation and artificial carrier must be the same in that IF stage. Both problems are considerably simplified in this instance because the living-room type of all-band (SW) receiver you are now being forced to use

The 5- to $10-\mathrm{mmf}$ capacitor reduces detuning of IF amplifier to a minimum but after the connection is made last stage should be repeaked. IF signal goes to longwave receiver through a short length of coaxial lead.
is not very selective, which means a range of signals at least 10 kHz wide (5 kHz on each side of the tuned frequency) will be passed on to the LW receiver with their comparative strengths unaltered. Then because just about all superheterodyne sets are blessed with AVC (automatic volume control), you merely have to tune the LW receiver up and down those IF signals until the desired modulation becomes readable. However, because of the military rig's own high degree of selectivity, the amateur station's modulation level will probably be weaker than normal. To compensate for this, push the LW's audio gain (volume) well up.

How Good? Now before anybody gets delusions of grandeur, we'll level with you. This system will not work as well as a regular Ham receiver. It is intended strictly for those who have inherited (gratis) one of those highly polished, so-called hi-fiz sets, or even one of the many transistorized portables whose shortwave band has been added just "for luck." On the other hand, when you consider that such rare amateur loggings as FK8AB New Caledonia, CR5SP Sao Tome, a number of Antarctic stations, etc. (who use almost nothing but single sideband), we think you'll agree that the effort involved in using this inexpensive converter combination is well spent.

Doorbell Silencer

Here's a simple way of silencing that doorbell or buzzer so that it won't wake Junior taking his afternoon nap.

Pick up a small twist switch with threaded shaft and nut for panel mounting from your hardware store or "five-and-dime." Remove the cover or housing from your doorbell and drill a hole through it large enough to pass the threaded shaft on the switch. Make sure the switch body inside the housing won't interfere with the bell mechanism.

Remove the wire coming from the bell transformer from its terminal and connect one of the pigtail wires on the switch to the transformer terminal. Then connect the transformer wire to the other pigtail wire on the switch by twisting them together and taping.

You don't have to turn off the house current for this job-house bell circuits carry

only 6 volts. However, it is wise to do so if you must stand on a chair or stepladder.

Replace bell housing, and have someone press doorbell button so you will know if the switch is in the "on" or "off" position.

THE"WEW MOD"SOIDIER GOES ELE:ETRONIC

Yesterday's science fiction has become today's fact
By K.C. KIRKBRIDE

Come a day soon the lowly foot-slogger will become a one-man division, complete with his own missile and missile launcher, landing apparatus, communications equipment. And he'll carry his gear wherever he goes.

A soldier turned packhorse? Hardly. For much of the new weaponry emerging from major research today rivals tiny Alice for wonder. Fantastic though it seems, the fout soldier of tomorrow will carry whole systems on his back, weapons that draw from astronomy and space and molecular electronics, and shame the crude armaments of the past.

Was a time man warred with sticks and stones, bows and arrows, and lances and swords. He rode off to battle resplendent on a white horse, with metal vest and gleaming sword and flowing cape. But for all his splendid beauty he was a pretty vulnerable target for the guy who didn't like him. So as time went on and he sharpened up a bit he fashioned more skillful weapons: the rifle, the machine-gun, the grenade. But never in his history, with all his advancing technology, has man designed instruments of war as sophisticated as the ones he tests today.

World's First. Using advanced radar techniques. RCA engineers have built a canny system that will mount on the barrel of a rifle, an M-79 grenade launcher, or an M-60 automatic. Its function: to spot moving enemy targets. whether walking or running, man or animal. large or small. jeep or ten-ton truck. (Cominued Overleaf)

THE"NEW MOD"SOLDIER

When tomorrow's soldier wants to spot a target in an area, he will simply switch a control on the back of his weapon. The world's smallest radar will then look over the situation, let its soldier boss know when it spots a target by emitting a series of cerie sounds. Ranging all the way from a low groan to a high-pitching squeal, such noises will reveal whether the radar has spotted a walking man, a crawling man, a man who is running, or a speeding vehicle.

Doppler Squeals. In essence, the radar -like any other-is simply applying Doppler know-how, the principle that says a sound or radio wave shortens as the emitting object moves toward the listener, lengthens as the object moves away. And the Doppler effect in this $2-1 \mathrm{~b}$. radar wonder results from the frequency- or pitch-change in the radar's $9-\mathrm{gHz}$ signals, which, converted to sound frequencies in a headset, can tell the soldier which type of target he has spotted and where it is.

In battlefield operation, the Doppler return will sound much like an off-key siren winding up when the vehicle it spots is moving away. Since the up and down and lateral vibrations of a truck all show different rates from those of a small vehicle such as a jeep, the characteristic differences between targets are distinctly discernibleeven when pickup targets are traveling at the
same rate of speed over a particular terrain.
The new radar spots almost anything that moves and at almost any speed-from 2 feet per second to over 45 miles per hour. And while performing its duties it puts up with no nonsense from the enemy. In fact, it is virtually immune to jamming, and a scrambler turns the radar beam into radio noise for enemy detectors.

Over Yonder. Should Mr. Radar miss the enemy lurking over the horizon, Lockheed's clever "Ping Pong" will spot him. For Lockheed engineers have just tested the world's first round-trip missile, a lightweight fellow that scouts the enemy, takes his picture, and return-trips on its own.

All the future soldier will have to do is aim and shoot, then wait for "Ping Pong" to return, guided by its programmed sensors and sliding fins. Already flight-tested near Lockheed's Burbank plant in California, the first-of-its-kind carries a rocket on each end. And in spite of all its propulsion power, Ping Pong makes little noise except for a brief "sput" when fired. After that it is as mum as any other cloak-and-dagger agent.

Spot The Sneak. But what if the enemy hides his tank or jeep under a camouflage net? Fairchild Space and Defense Systems has built a see-through-everything camera that will spot the sneak in its hiding place. Applying spectograph technique, the camera

filters densities of light by wavelength, detects minute differences in living, dying, and dead foliage by chlorophyll content so that a photointerpreter can see tiny shadows that may reveal a tank's hiding place.
Four rotating lenses of $3-\mathrm{in}$. focal length record images of the target through filters of different wavelengths side by side on $91 / 2$ in. infrared roll film. The blue, green, red, and near-infrared filters show up as black-and-white densities proportioned to the brightness of the filtered light.

To the person inexperienced in interpreting the finer points of photos, these gradations indicate changes in terrain unspottable in conventional photography. When advanced color techniques are added, the Fairchild picture may show the terrain in blue, the hidling tank in shocking pink.

Calling Centers. With all these electronic aids, tomorrow's soldier won't need worry too much about eneny surprise attack. But speeding information to command centers will call for split-second communications.

To this end, Litton Industries has built a microminiature radio transmitter that weighs only four pounds, complete with batteries. Formatly named the "Digital Message Entry Device," it will sped messages in digital form in less than half a second. The sender-soldier need only set one of 22 "thumbwheel" switches in position and press
the transmitting switch. Instantly, the digital message will burst over the airwaves to be picked up at a command center by a standard receiver.

Each of the 22 numbers represent a prearranged message. And when the sender hears a responsive hum in his helmet he knows his message has been decoded. Inimune to jamming, the "entry" will be especially valuable for future allied soldiers who speak different languages, since they will be able to communicate in code.

Tiny TV. Though digital messages cannot show tactical situations as they happen on the battlefield, the television picture can. To send pictures to field commanders behind the front lines, Westinghouse has devised the world's tiniest TV camera. Even today the smallest space camera weighs up to four pounds, calls for 100 to 200 cubic inches of space and 9 to 30 watts of power. But not this tiny viewer.

The Westinghouse molecularized wonder weighs only $1 \mathrm{lb} ., 7 \mathrm{oz}$. and is believed to be the lightest and smallest TV camera ever built. With a 1 -in. vidicon camera tube, the unit is about as long as a two-cell flashlight. Without lens, it measures $71 / 2 \mathrm{in}$. long. 2 in . wide, $31 / 4 \mathrm{in}$. deep, occupies only 50 cu . in. and runs on 4 watts of power.

Asked how they can make a camera that dainty, Westinghouse engineers say they owe

THE"NEW
 MOD"SOLDIER

all to a special electrostatic tube that includes a binary countdown synchronizing generator capsule of producing standard interlaced 525 -line scanning at 30 frames per second. Its 197 miniature componentscompared to 582 in conventional circuitry include 36 molecular blocks, giving the camera its sync generation, amplification, and scanning. And the midget even manages picture quality comparable to its grown-up TV-studio sisters.

To match the tiny camera, Westinghouse offers a receiver mate, $31 / 2 \mathrm{in}$. high, $11 / 2 \mathrm{in}$. wide, $41 / 2 \mathrm{in}$. deep, adding up to 21 cu . in. in all. Truly microelectronic, the VHF receiver midget gets its gumption from rechargeable silver-cadimum batteries.

Soff Touchdowns. As important to the New Mod soldier as intelligence and conimunications will be the ability to land on his feet in the new helicopter warfare. To fashion "shoes" for the foot soldier forced to parachute-land or drop onto a tree-top landing mat from a helicopter, lockheed borrowed from its moon-landing know-how.

Originally designed to cushion the lunar excursion modules (L.EM) when they land on the moon, the DynaSorb "shoes" are fashioned of metal tuhing slotted at one end. Under stress the metal curls in upon itself, much in the manner of a party noisemaker. In this way, the new shoes will absorb energy impact on landing.

In L.ockheed's design, a cylindrical tube is notched at measured intervals around its base. On impact a cone rises within the tube and extends the splits which have a natural tendency to coil. A control ring on the outside of the tube will govern the splitting rate and the tightness of the coils which bear the impact. The "shoes" come in a variety of hardy metals that can withstand Superman stresses.

Red-Eye. But probably the most amazing of all the new-day small-wonder weaponry is an anti-aircraft missile a soldier can fire from his shoulder, giving him for the first time an effective weapon to protect himself against low-flying aircraft. General Dy-

DynaSorb footwear, originally intended to cushion moon landings, may also come in handy for parachute jumps and helicopter exitings. Design of device is such that it automatically absorbs stress of impact.
namics has already tested a 4 -ft., solid-fuel, infrared-nosed weapon weighing only 28 lbs . Not only will it fire from the shoulder, but the device also is designed to home onto any low-flying craft and blast it with a highexplosive warhead.

Tomorrow's soldier will simply point the fiber-glass launcher toward the target. And when the missile signals audibly or visually that it's sighted the target, the gunner will uncage the seeker, let the red-nosed wonder soar toward the heat of the enemys engine.

A two-stage job, the first stage will thrust 20 ft . after firing. sufficient distance to safeguard the soldier. The second stage will then soar on target, with the missile's control taking in continuous target information and signalling the fin wings just what to do to speed toward enemy rendezvous.

With its microelectronic circuits all on tiny silicon chips, the amazing small-wonder missile will form part of the harness tomorrow's soldier will carry. Significantly, a pack including all the new weapons systems just described will weigh no more than a portable television set. But it will give tomorrow's soldier the most sophisticated weaponry man has ever known.

HEATHKIT MODEL AD-16
 Solid-State

Stereo Tape Recorder

- It's not uncommon these days to run into people who automatically assume that anything offered as professional equipment is pure junk. And they do have a point, since anyone exposed to "professional recorders" at \$29.95 and "professional amplifiers" at $\$ 19.95$ could hardly believe otherwise.

This makes it all the more unusual to find a really professional recorder that isn't touted as such. Yet the Heath AD-16 is just thata professional recorder of the type you could very well find in a broadcast or recording studio. What makes the Heath a professional recorder is that it originally started out as a professional machine-a Magnecord.

It appears that Heath took an already existing "professional" recorder, reduced it to its component parts, and eliminated some tricky equalization adjustments that could give the nontechnical user some headaches.

Heath then added a construction manual, packed the unit in a shipping carton, and offered it at a savings of almost $\$ 200$ below the wired (Magnecord) price. As far as we can determine, the major difference between the Heath AD-16 and the original Magnecord lies in the elimination of the adjustable frequency equalization-the Heath model provides only fixed equalization for a basic "flat" response.

Sound interesting? You bet it is. And there are some other surprises. Unlike some other recorders that are jam-packed with almost useless features and accessories, the Heath is as straightforward as a sunny day in June. There are no slide-projector control circuits, no automatic echo, no automatic sound-on-sound: in fact, no automatic anything to run up the cost. The price of the Heath AD-16 represents only the transport

Fig. 1. Record-play response of Heath AD-16 at $33 / 4$ ips was in keeping with company's claim of $\pm 3 \mathrm{db}$, 30 to $10,000 \mathrm{~Hz}$. Note that both channels offer approximately the same response.

Fig. 2. Overall record-play response of Heath AD-16 at $71 / 2$ ips again was generally in line with manufacturer's specifications. Two channels differ by factor of only 1 db .

and electronics necessary for straight four track stereo recording.

Focus On Features. Among the many features of the AD-16 are three heads-for simultaneous playback (monitoring) while recording; an L-Stereo-R mode switch that permits recording on either the L or R track or both: pilot lamps to indicate the track(s) in the record mode; a built-in mixer that permits mixing the signals from the microphone and auxiliary input jacks; independent, friction-clutched controls for nicrophone, auxiliary, and output level; two stereo (or mono) headphone jacks that can accommodate any headphone inpedance; two amplified VU meters that monitor the input and playback levels. In short, the AD-16 boasts every feature you would expect to find in any truly professional (broadcastquality) recorder.

The tape transport is a three-motor affair, with one for the capstan, one for the supply reel, and one for the take-up reel. Pushbut-ton-operated solenoids, rather than complex mechanical levers, activate the appropriate drive mechanisms. In addition to the usual play, fast forward, fast rewind, record, and interlock buttons, there is a cue button that is perfect for locating a specific spot on a recording and for doing professional-style editing.

Putting It Together. Except for the head assembly, the entire AD-16 is user-assemhled. Building the electronic side of the AD-16 consists primarily of pushing components into a printed circuit board and soldering. And putting the transport together is not notably difficult since solenoid operation sharply reduces the number of mechanical components and simplifies adjustment of those which remain. The all-important head assembly is pre-mounted at the factory to insure that tracks are properly positioned on

Bottom view of recorder reveals input and output jacks mounted on access plate, which also contains posts for storing line cord.
the tape, although the builder must make final head-azimuth alignments. A full set of height and positioning adjustments is provided for each head should the need arise for head replacement or repair. The instruction manual goes into detail on this.

Pushbutton controls are part of the transport deck. as is a belt-driven, resettable revolutions counter. A "tape gate" is also part of the transport and is pulled in by a solenoid in the play, record, and cue modes. A builtin tape-break switch (auto-stop) doubles as a supply-reel compliance arm, and a compliance arm is also provided for the take-up reel.

The deck is completely operative upon completion of assembly except for the minor spring tension adjustments. Only setting the hias current and aligning the heads remain, and Heath provides a special tape for these two adjustments. The tape provides
(Continued on page 114)

Top view of unit shows location of heads, VU meters, and pushbutton controls. Use of pushon terminals on leads to and from head and between transport and printed-circuit board obviates need for soldering.

WWILABCHECK

KNIGHT-KIT SAFARI III

23.Channel Portable CB Transceiver

The latest addition to Knight's line of CB transceivers really offers something different and unusual, which, although it may not appeal to all, will certainly find a home with some.

The Safari III looks much the same as any other solid-state rig, with the usual PTT microphone. But the difference is that the mike is in reality a speaker/mike; release the PTT switch, and the sound is right out there in front of your face. Ambient noise too high? Just move the mike next to your car and literally pour the sound down the canal.

Priced at $\$ 84.50$, the Safari 111 is available only as a semi-kit. To insure that the transmitter meets FCC regulations, the entire transmitter section is factory-wired, tuned, and adjusted. The builder makes absolutely no adjustments to the transmitter section during or after construction. Building the kit consists, essentially, of mounting the receiver and modulator components on the printed circuit board (the transmitter and receiver utilize the same board). And

Since output jack is part of printed-circuit assembly, entire transceiver can be removed as unit for service and adjustment.

with the exception of the front panel controls and power-cord socket, there are few components which are not mounted on the PC board.

Push And Solder. Construction is not difficult since most of the work consists of pushing the components through the matching holes and soldering. Typical of Knightkits utilizing printed-circuit wiring, the printed wiring in this unit has an "anti-run" coating that exposes the copper foil only at the point to be soldered. Even if you use excessive heat or solder, the solder will be confined to the exposed copper (a good feature for beginners and oldtimers alike).

The only point at which extreme care must be taken is with the crystal-socket-to-selectorswitch wiring. Although the transceiver is normally supplied with but one set of crystals, there are sockets for full 23 -channel operation. That means 46 crystals, and, therefore, 46 leads running to the selector switch. While the selector switch wires are color-coded, the same color is used several times. As a result, extra care must be used to insure that the right socket lead goes to the right selector terminal (yep, we goofed).

Ready To Go. When the kit assembly is completed you're in for a real surprise. For with the exception of the three second-oscillator coil adjustments, all receive coils are pre-aligned. Even a careful instrument alignment made absolutely no improvement in performance!

The finished transceiver line-up is one stage of RF, two stages of overload-protected IF amplification, a noise limiter, an S-meter amplifier, and the usual audio section. The transmitter uses three transistors.

Performance is just about what you would expect from this line-up. Power output at

13.6 V (battery supply) was 4.6 watts into a 50 -ohm load. Modulation, under the best conditions, peaked at 80%, running about 50% on an average voice level (if there is such a thing as an average voice level).

Receiver sensitivity checked out at $1.8 u \mathrm{v}$ for a $10 \mathrm{db} \mathrm{S}+\mathrm{N} / \mathrm{N}$ (signal plus noise to noise) ratio. AGC action, that is, the variation in audio output for a 94 db variation in RF input signal, was 23 db . Adjacent channel rejection was slightly better than 35 db -not super-selective by any means but adequate in all but the most heavily congested CB areas and certainly adequate for straight family and business conmunications.

Talk And Listen. Because of the speaker
arrangement we could not use the standard test for audio power output as it would be meaningless. Subjectively, the signal reproduction is quite good if you favor having the speaker in the microphone. Unlike very early CB transceivers which utilized speaker/mikes and delivered a muffled, "hollow" sound, the Safari III delivers a notably intelligible signal from the speaker/mike.

To us, response appeared devoid of all highs and lows-it was all mid-range, such as you'd expect from a very good quality intercom. While it was a bit unusual to have the sound coming from the mike, under high ambient noise levels it proved advantageous to be able to direct the sound directly into the ear. But it might prove a bit cumbersome to utilize this system in a quiet office.

Many options are available for the Safari III. You may purchase individual crystals at $\$ 2.50$ each, or a full set at $\$ 69.95$. There is a portable battery pack that accepts D cells or rechargeable alkalines, and an AC power pack that also doubles as a battery charger. For field use there is a canvas carrying bag and a portable antenna specially designed to be used with the battery pack.

For additional information on the Safari III, write Dept. 20, Allied Radio Corp., 100 N. Western Ave., Chicago, III. 60680.

Shrunken Antenna for Expanded DX
 - Limited in antenna space? Here is a low-
 Either 72 -ohm coax or twin lead may be

 cost three-band system that will fit the average backyard and is ideal for the novice amateur operator since it's designed for 80. 40 and 15 meters.The system is constructed with 300 -ohm television twin lead and consists of a $40-$ and 80 -meter dipole with the same feed line at the center. The entire system is "shrunk" to 100 ft . by bending the $80-$ meter section back 12 ft . at each end. There is no noticeable sacrifice in performance.

Construct the antenna to the dimensions in the diagram, using copper-clad steel TV twin lead. Start by cutting two $50-\mathrm{ft}$. lengths of twin lead and attaching an egg insulator to a single insulator to form the center feed point.

From each outer end, measure back 12 ft . toward the center, then remove a $5-\mathrm{ft}$. section of conductor from one side of the twin lead. Attach the feed line and the system is ready to go on the air.
used for feeding the system. A 72 -ohm twin lead reduces the weight which the antenna must support and keeps the system electrically balanced.

You should obtain adequate results with this antenna system of 80,40 . and 15 , and it will also work fairly well on 20 and 10 meters. But for the best overall performance, use an antenna tuner, if available.

by James A. Fred

Measuring the current drawn by an AC-powered circuit will often pinpoint those obscure defects in power transformers and other parts.

- One of the benchmarks that separates the tinkerer from the serious electronic experimenter is an AC ammeter. Everyone has a VOM or a VTVM, but very few tinkerers ever measure AC amperes. There are many times when the ability to measure current will save the day on a repair job or an electronic design project.

To keep from draining the bank account an ammeter should be a multi-range job. I started with a $0-50$ AC milliammeter simply because I had acquired one in a trade. You can usually pick up a good used one from Bigelow Electronics, P. O. Box 71, Bluffton, Ohio 45817 or buy an inexpensive new one. There are two general types of AC milliameters in use today. One is called an iron vane type while the other is simply a DC movement with a rectifier to change the ACcircuit current to DC-meter current. The second is referred to as a rectifier-type ammeter. For the experimenters the inexpensive ironvane type is preferred and is the one used here.

Since the meter has a full-scale reading of 50 ma it is best to make it read three different values of current beginning with a five.

The selected ranges were: 0-50 AC ma., 0 500 AC ma., and 0-5 AC amperes.

It's the Shunt. You can make any range current meter that you need by following these directions. To make a milliameter read higher values of current it is necessary to put a shunt across the meter-you put a lower value resistance in parallel with the metercoil resistance. To make the $0-50$ ma meter indicate 500 ma select the shunt so that 50 ma goes through the meter and 450 ma goes through the shunt. On the 5 ampere range there will be 50 ma flowing through the meter and 4.950 amperes through the shunt.

Internal Resistance. To find the resistance of the shunt you must know the internal resistance of the meter. To find this value connect the unknown meter in series with a battery and a rheostat. Adjust the series rheostat until the meter reads full scale. Connect a second rheostat in shunt (across the meter) and adjust the shunt until the meter reads half scale. See the drawing for this circuit. Disconnect the rheostat from across the meter and carefully measure its resistance. This value of resistance is equal to the resistance of the meter.

Shunt-Resistance Value. Using the following formula with the meter resistance just found you can determine the values of the shunt resistors.

$$
R=\frac{R m}{(n-1)}
$$

In this formula R equals the shunt resistance. $R m$ is the meter resistance and n is the scale multiplication factor. For example let's convert the 0-50 ma meter to read 0-5 amperes. The scale multiplying factor is 100 . If the meter resistance is 100 ohnis then:

$$
R=(100-1)=1.01 \text { ohms }
$$

The 1.01 -ohn shunt will have to carry 4.950 aniperes at the full scale reading. By using the power equation

$$
P=I \because R
$$

we find that we need a 27 -watt resistor. A 50 watt adjustable resistor will work nicely here-if you actually intend to measure 5 amperes. (If all your work will be in the 2 ampere neighborhood a 25 -watt, 1 -ohm resistor will be adequate.) If the shunt resist-

To find internal resistance of meter set series rheostat for full scale on MI then connect shunt rheostat and set it for a half-scale indication on MI. Next measure resistance of shunt rheostat-it equals meter resistance. Schematic diagram below is a practical multirange ammeter-circuit is for AC or DC meter.

ance figures out to less than one ohm it may be necessary to make it from copper or nichrone wire. Remember it will be necessary to multiply the scale readings by 100 when using this shunt. You can use the same formula to figure other values of shunts.

Calibration. When you get ready to check the calibration of your meter it would be wise to have another meter to use as a standard. Connect the standard ammeter, your meter, and a load of the proper size in series. (See the circuit diagram for this step.) Adjust the load for 2.5 amperes through the standard meter and adjust the shunt's resistance until your meter reads 2.5 anıperes. Recheck the meter with a 5 -ampere load. A four-position single-pole switch is wired, as shown, to select the different meter ranges. A meter short-circuit position is included because it is good practice to always short out the meter until you are sure of your circuit. A phenolic board is used to mount the switch and resistor. The meter is mounted first in the aluminum box and then the phenolic board is mounted to the meter by the meter studs. The photographs show how everything goes together.

Easier Testing. Not only is an ammeter useful to an electronics experimenter, but many radio-TV repairmen are finding set

[^1]troubles with an AC ammeter. The ammeter described above will work on most radios, audio amplifiers, and TV sets. Do not use it on irons, toasters, or other high current devices. To make this meter more useful in checking line-cord powered devices an adapter (shown in the photographs) was developed.

Since there was no room in the meter box for an AC receptacle or fuse holder I decided to make an additional box that could be easily fastened to the meter box. The end dimension of the meter box was 4 -inches wide by 3 -inches high. A box 2 -inches deep that would match this would be great. but none are available. The nearest standard-size box is $4 \times 23 / 4 \times 2$-inches or you could cut down a $3 \times 4 \times 5$-inch box to match the meter case. An AC socket and plug are mounted on the front of the box-on the top is a fuse holder and two 5 -way hinding posts. The back of this box has two banana plugs that mate with two banana jacks mounted in the meter box. These banana plugs and jacks just hold the two boxes together and do not carry the meter current. Be sure and use an instrument fuse to pro-

All circuitry inside meter case (leff) is on phenolic board that mounts directly on meter terminals. Tapered end of phenolic board is to give better clearance for leads to Jl and J2. If you start with a larger case, adapter can be built in, eliminating J3, J4, J5 and J6 as well as P1 and P2. The $\mathbf{5 - a m p}$ fuse will not protect M1 if shunt resistor should open up.
end and a female socket on the other end is used to connect the ammeter adapter to a wall outlet.

One Use. I had no sooner finished the ammeter adapter than an opportunity came to use it. A two-cabinet stereo set came into my shop with the complaint that it was popping fuses. When I checked the units I found both fuses popped. I connected each unit to the ammeter adapter and found that each unit alone drew approximately one ampere. Tapping the tubes in the changer cabinet showed up a bad 5Y3GT tube that caused the am-

Adapter circuit is simple to add to any ammeter. Fuse protects instrument but it will not prevent meter overload if a shunt should burn out-use meter fuse (see ammeter schematic) of meter rating.
meter to read 3 amperes. Since each unit should have had a 1.5 ampere fuse to start with, it was easy to figure why the fuse had gone. Further examination showed that the blown fuse in the other cabinet was only a

Bottom of adapter shows male and female connectors. Chassis-mount male plug lon left) is mounted in a shell to recess it below surface of adapter box to protect pins from damage. Fuse and 16 at top.
$3 / 4$ ampere size. Proper ($11 / 2$ ampere) fuses were put into both amplifiers along with a new 5Y3GT tube and no more trouble was found. Monitoring the current for short intervals over a period of several days showed no change.

Many defects in electronic equipment can be detected with an AC ammeter. Some of these are: shorted or partially-shorted power transformers, bad tubes, and bad or leaky filter capacitors. It also makes it easy to decide what size fuse to put into newly designed (and built) electronic equipment. A safe rule-of-thumb is to install a fuse rated about one and a half times higher than the operating current.

Desk Lamp Mike Stand

Record that tall story using the desk lamp reflector to increase pickup range

A microphone stand for hand mikes (such as those that come with less expensive tape recorders) can be improvised from a flexible neck desk lamp with its cord removed (or at least disconnected), a plug to fit the lamp's socket, and a $1 / 8 \times 3 / 8$ in. metal strip. Bend the metal strip to the size
necessary for the mike in question, and use as shown. To pick up faint sounds attach the lamp's bowl-type reflector to the lamp's socket to "funnel" or focus the sound into the mike. Face the mike toward the inside of the reflector. Position mike closer or further from the bowl for best pickup.

Constructing a unit with no springs to adjust and no relay contacts to pit or stick
is possible if you switch with a regular unilateral SCR wired across a diode bridge.
Just think about it! The next time you show color slides of your last vacation you can sit on your duff and enjoy a cool, mixed drink while your tape recorder does the work. A rich, clear narration prepared in advance patters out in step with changing slides without any effort on your part. Your guests will be entertained as well as curious about that gadget you call the Tape-Slide Synchronizer.

The Tape-Stide Synchronizer is an electromechanical device which automatically actuates the slide-changer mechanism at the exact instant dictated by the commentary on the magnetic recording tape-thus assuring perfect synchronization of commentary and slides at all times. A taped slide-show commentary has a number of advantages over live, off-the-cuff commentary. One advantage is that important facts (that are hard to come by) will not be forgotten on successive showings as time goes by. Another advantage is that the show need not he postponed if your voice goes had the night of the performance. You can sit back. relax and enjoy yourself. (Don't forget that Jrink!)

[^2]Early units were difficult to use. Some required conductive marks to be placed on the tape, others used a high-level audio signal in the sound track (which was objectionable as it could be heard). In order to overcome the objection of the noise from the sync signal, one unit operated on the complete absence of sound on the tape. A four-second (or longer) silent period would activate the slide-changer mechanism. This system was workable with monaural tapes hut it was difficult to record the commentary without pausing, thus causing unwanted slide changes. Some success was also had using inaudible (ultrasonic) sync signals.

For Stereo Tape Recorders. With the advent of the two- and four-track stereo-tape record and playback equipment the disadvantages of the early units were automatically eliminated as the commentary could be recorded on one channel and the sync signal on the other. On playback the sync signal would operate the slide changer via the switch in the synchronizer. But even with this there were relay contact problems.

A Unique Circuit. This Tape-Slide Synchromizer is solid state. Using the unilateral SCR (silicon-controlled rectifer) alone will pass only one half of the AC (sine wave) power-still requiring a relay to switch on

and off the AC to the shaded-pole induction motor-which normally powers the semiautomatic slide changers. By using the SCR with a diode bridge circuit both halves of the $60-\mathrm{cycle}(\mathrm{Hz})$ power are passed and the relay can be eliminated. Another way to eliminate the relay is to use two SCRs in inverse parallel but this is more expensive.

Originally this Tape-Slide Synchronizer was used with a stereo record-playback tape deck with only one power amplifier and speaker-for the commentary channel.

The three-stage transistor amplifier operates the SCR circuit. It provides plenty of gain for use with the tape deck and even a small crystal microphone can be used to operate the slide changer and put a sync signal on the tape.

SCR-Diode Bridge Switch. The heart of this unit is the SCR-diode bridge switchthe basic switch circuit is shown top right. The SCR has high resistance between anode (A) and cathode (C) when there is no signal on the gate (G), and no AC can flow through the diode bridge to power the motor -it is off.
When the gate of SCR1 is made positive (by a positive-going signal between gate and cathode) the resistance of SCR1 becomes very low between anode and cathode (it conducts) and the motor runs.

Conduction of both halves of the ACpower sine wave is brought about as follows: when the AC cycle is positive at W , current

Unique basic circuit is heart of Slide Synchronizer. Power-line AC flows through motor M1 but DC flows through SCRI by way of diode bridge-simple and inexpensive.
flows through motor M1, then through D5 from A to B, through SCR1 to D2 (from D to C) back to the other side of the line (Y).

When the positive cycle of the AC line is at Y, current flows through D3 (from C to B), through SCR1 to D4 (from D to A), then back through motor M1 to the other side of the line (W).

In like manner, the sync signal from the output of the tape recorder, when rectified and applied as a positive (+) pulse to the gate of the SCR-diode bridge, switches the slide-changer motor.

Solid-State Synchronizer. The complete schematic wiring diagram, including that for the slide changer, is shown below. Remote pushbutton S2 is used to operate the slide changer. An Airquipt (model Y) semiautomatic slide changer is used here. However, practically any remote-pushbutton operated unit could be used. The slide changer is shown attached to a TDC

Complete setup, ready for an automated slide show, has Tape-Slide Synchronizer between slide projector and tape machine. Use any automatic projector, stereo unit.

(model D) slide projector.

Current flows through the motor when S3 is pressed. (Numbers 1 through 4 shown on the slide-changer portion of the schematic are the actual contact numbers molded into the Cinch-Jones 4 -contact chassis socket in the slide changer.)

When the motor starts it operates the motor-driven cam switch (S 4 -wired in parallel with S3) keeping current flowing when S3 is released. After the changer has completed its cycle the cam switch opens, the motor stops-and everything is ready for another slide change when S3 is pressed again.

The Tape-Slide Synchronizer is connected electrically to the slide changer through the 4-contact plug and operates as follows:

Depressing S1 connects the collector of the last stage of the three-transistor audio amplifier (through C1) to the input of the previous (second) stage converting it into a $1000-\mathrm{Hz}$ feedback oscillator. The $1000-\mathrm{Hz}$
signal from the ungrounded secondary of the output transformer is rectified by D1, passed through the RC filter (R 2 and C 4) to the gate of SCRI. The $1000-\mathrm{Hz}$ signal appears at the gate of SCRI as a positive-going pulse-activating the solid-state switch which in turn powers the slide-changer motor as

PARTS LIST

C1-. 01 -mf, 200 volt, capacitor (miniature)
C2-. $002-\mathrm{mf}, 200$ valt, capacitor (miniature)
C3-1000-mf, 15 -volt, electrolytic capacitor
C4-15-mf, 15 -volt, electrolytic capacitor
DI-IN540 silicon diode
FI-2-amp 3AG fuse
11-6.3-valt miniature pilot lamp
JI, J3-Phone jack, miniature open circuit
J2—Phone jock, miniature closed-circuit
P1-4-contact plug (Cinch-Jones P-304-CCT to fit slide-changer socketl
R1- 5000 -ohm miniature potentiometer
R2, R3-50-ohm (47 -ohm), 1-watt resistor
S1-S.p.s.t. narmally-apen pushbuttan (Grayhill 30-1 s.p.s.t. or equiv.l
52-5.p.s.t. slide switch (Wirt or equiv.)
SCR1-117-valt, 4.7-amp silicon controlled recfifier (GE-Z) or equiv.)
T1-Filament transfarmer, 117 -valt ta 6.3 -valt, 0.6 amp Stancor P-6465 ar equiv.

Z1—500-valt, 1-amp (Mallory FW-500 fullwove silicon bridge or equiv.)
Z2-200-valt, 1-amp (Mallory FW-200 fullwove silicon bridge or equiv.l
1-3-transistor, miniature audia amplifier Itofayelte PK-522 99C9039 or equiv.)
1 Chassis bax, $6 \times 5 \times 21 / 2-i n$. (cut down from $91 / 2 \times 5 \times 21 / 2$; Bud AC403 ar equiv.)
Misc.-Phenolic baard, terminals, machine screws, nuts, wire, salder, fuse halder, plastic (spaghetti) tubing, plugs, etc.

Estimated cost: $\$ 14.00$
Canstruction time: $\mathbf{3}$ hours

Large shaded areas show original circuitry of prewired units used in Tape-Slide Synchronizer. Added circuitry is outside of shaded boxes.

previously explained. R2 limits the current through the gate circuit of SCRI to a safe value. C4 is the filter capacitor.

The output of the oscillator is also fed to the stereo-recorder input (from J3) and it is recorded as the sync signal on the control channel of the tape. The commentary is recorded in the usual manner on the other channel of the tape at the same time.

During playback the output of the control channel of the recorder is connected (via J2) to the input of the second stage of the audio amplifier where it is amplified, rectified hy DI and applied to the gate of SCR1 -the solid-state switch powers the slidechanger motor.

Microphone Sync. A small crystal microphone can be plugged into JI and when the word "change" is spoken into the mike there is adequate amplification to operate the slide changer mechanism and record a sync signal on the control channel of the tape.

Tape Deck. If only a stereo tape deck (without power amplifier) is available. there is ample amplification for both recording and playback of the sync signal on the control channel using either the microphone or S1. On playback, the output of the tapedeck preamp (which contains the sync signal) should be connected to Jl for the necessary amplification. During recording the sync signal from jack J3 is connected

This ver,ion of Tape-Slide Synchronizer has top-of-the-cabinet lettering facing operator. Cables come out of unit on the side of cabinet away from the operator.
to the input of the tape-deck preamp. Using Stereo Recorder. Extremely smouth operation has been obtained using the Tape-Slide Synchronizer with a Wollensak T 1580 stereo recorder. With this recorder the sync signal can be taken off at J2 (instead of J3) and applied to the input of the control channel to record the sync signal. On playback the output of the control channel can be taken from the external speaker jack and fed to J2 where it is amplified and operates the solid-state switch.

With this setup. output jack J3 is never used and the recorder cable need not be changed from J3 to J2 (in the Tape-Slide Synchronizer) when going from record to playback. (Contimued on page 118)

静

Inside view of the Tape-Slide Synchronizer shows most of circuitry is contained on circuit boards mounted vertically on skirts of metal chassis box. Ready-made plate covers bottom when finished.

We all shared the same license. Me, my girl Ora and my sometimes buddy, Nat. And tonight, the big night, I (Unit 1) had a date with Ora (Unit 2) at 8:00 sharp. And I was late, already a half hour late. Traffic being light, l'd taken the ocean drive (to pick out a parking place in advance) and no sooner was I committed to this route than fog commenced to roll in. At 8:30 I crawled along at 10 per, still a good 15 minutes from Ora's beach house. I tried to find some jazz on FM, which is scarce along this coast. Nearest station is on the island, 50 miles away, and it wasn't making it through the fog.

I switched over to CB just as Ora put her carrier on and pinned my needle. "This is Unit 2, " she said softly. "Unit 1 , where are you?" A sweat trickled down my spine.

I came back, "Crawling along in this darn fog. I'll be there by $8: 45$." I speeded up a little.
"That's nice, because at 8:50 I lock the doors-", a bit of dead carrier indicated Ora considered her next thought, "-and call Nat."

Nat and I both have a thing for her but so far the competition had been more or less polite. Anyway Unit 3 must have heard Ora because on the air he came. Darn it!
"Unit 1, CQ Unit 1." His carrier cut out briefly. "This is Unit 3 with emergency traffic." He sounded breathless and all that.

I pretended not to hear and speeded up a little more.

by C. M. Stanbury II

"Unit I, come back. We've been invaded. I'm driving from Cometland toward Ora's. They're only a mile or so behind me on the ' highway." Nat paused for breath and assumed his most desperate tone. "Do you read me?"'

Cometland is a resort about 20 miles up the coast. With one hand on the wheel and the other on my transceiver, 1 decided to play along. I put myself on the air. "Unit 1 to Unit 3, invaded by what? Dragons from Mercury or gnomes from who knows where?"
"Giants in spaceships. A whole army of them. They've completely taken over Cometland." His signal inched up a little on the S-meter.

Ora broke in. "With this fog, how can you tell?"

Unit 3, undaunted. "Unit 1, you'd better turn back. l'll pick up Ora and meet you further south."

Yours truly pushed a little harder on that accelerator. "Sure you will."

She, sweetly, "Whoever gets here first ."
Nat kept it up. "I'm not fooling, Unit I. They've turned Cometland into a base and more spaceships are landing right now. You can hear them coming in from here." There was a loud hum in the background.

I yawned a little. "So you brought your shaver with you. And don't forget the last CB'er who sent a phony distress got two years in the pen."

It was her turn. "Maybe he's not worried because the license is in your name. Anyway, man, you'd better make it here within five minutes."
"Just passed the lighthouse, Ora. That makes it less than a mile." The fog horn was really blowing up a storm and now the visibility had dropped to absolute zero. I slowed down, thought about that license bit, and began to sweat a little. "Unit 3, this is Unit 1. As licensee l've just cancelled your operating privileges."

A moment of quiet and then he returned. But now that hum was really tremendous. "One of their ships is right overhead. I think it's after me. The thing is draining power from my batteries." His signal dipped appropriately. "Now my car has stalled and I can't move." With the most tremendous panic you ever heard come out of a CB receiver, "They're landing on the road in front of me." He faded out completely.

Ora took over the channel. "Hey, Unit I, it's now 8:45. Do you figure those astronauts out there in the fog would treat me better than you guys do?"

I inched around a final curve by following the shoulder of the road. "Wouldn't bet on it."
"Well, I may get the chance to find out because there's a big bright light coming up over the northern horizon."

I put myself hack on the air quick. "If Nat's arrived there first, both your operating privileges are cancelled."

Thirty seconds of dead air.
"Nobody here except me, yet. But if he's kidding, how come we're the only two people on the air?" She laughed ever so slightly, almost nervous. "Anywhere, any band."

Enough! Between the fog and Nat's phony distress. I was really hung up. "All right, girl, if you really want to play, standby." I switched on my general coverage converter and began working down through the international SWBC bands. 16 and 19 meters were absolutely dead but on $15,016 \mathrm{kHz}$ some bird with a phony accent and a madeup language was sending messages. I returned to CB and hit the airwaves again. "Nat, it's also illegal to transmit off the Citizen's Band. Do you read me?"

Silence.
On 15,016 those weird messages continued to flow. 1 moved on down through 25 and 31 meters which were also blank. Static showed up around 6 MHz but still no stations. A funny feeling crept into the pit of my stomach.

The AM broadcast band was also silent.
1 put my CB transmitter on in a hurry. "Ora, do you read me?"

Her signals were so weak I couldn't make out what she said but now I was close enough to see her house through the fog. In front of it-a spaceship and astronauts. Giants, most of them six feet tall, well over 175 pounds, no tails at all. And that's how in the year X/4000 Venus was conquered by invaders from the planet Earth.

Regardless Of What You Pay For A Color TV...

It Can't Perform As Well As This New Heathkit " "180" For Only ${ }^{5} 379^{95^{*}}$

Here's Why!

Exclusive Features That Can't Be Bought In ReadyMade Sets At Any Price! All color TV sets require periodic convergence and color purity adjustments. This new Heathkit GR-180 has exclusive built-in servicing aids so you can perform these adjustments anytime . . without any special skills or knowledge. Simple-to-follow instructions and detailed color photos in the GR-180 manual show you exactly what to look for, what to do and how to do it.
Results? Beautifully clean and sharp color pictures day in and day out ... and up to $\$ 200$ savings in service calls during the life of your set!
Exclusive Heath Magna-Shield . . . surrounds the entire tube to keep out stray magnetic fields and improve color purity. In addition, Automatic Degaussing demagnetizes and "cleans" the picture everytime you turn the set on from a "cold" start.
Choice Of Installation . . . Another Exclusive! The GR-180 is designed for mounting in a wall or your own custom cabinet. Or you can install it in either optional Heath factory-built Contemporary or Early American styled cabinets.
From Parts To Programs In Just 25 Hours. All critical circuits are preassembled, aligned and tested at the factory. The GR-180 manual guides you the

rest of the way with simple, non-technical instructions and giant pictorials. You can't miss!
Plus A Host Of Advanced Features . . . like the hi-fi 180 sq.: inch rectangular tube with "rare earth phosphors", smaller dot size and 24,000 volt picture power for brighter, livelier colors and sharper definition . . . Automatic Color Control and gated Alutomatic Gain Control to reduce color fading and insure jitter-free pictures at all times . . . deluxe VHF Turret Tuner with "memory" fine tuning . . 2-Speed Transistor UHF Tuner ... Two Hi-Fi Sound Outputs for play through your hi-fi system or connection to the GR-180's $4^{\prime \prime} \times 6^{\prime \prime}$ speaker . . Two VHF Antenna Inputs - a 300 ohm balanced and a 75 ohm coax . . . I-Year Warranty on the picture tube, 90 days on other parts. For full details mail coupon on the following page. Better yet, use it to order the best $19^{\prime \prime}$ Color TV buy . . . it's available now in limited quantities.
*Kit GR-180, everything except cabinet,
102 lbs. $\$ 379.95$
GRA-180-1, walnut cabinet (shown above).
$30 \mathrm{lbs} . .181 / /^{\prime \prime} \mathrm{D} \times 281_{4}{ }^{\prime \prime} \mathrm{W} \times 29^{\prime \prime} \mathrm{H} . . .$. . $\$ 49.95$
GRA-180-2, Early American cabinet,

Available February
$\$ 75.00$

NEW 12"' Transistor Portable TV — First Kit With Integrated Circuit

Unusually sensitive performance. Plays anywhere ... runs on household 117 v . AC, any 12 v . battery, or optional rechargeable battery pack (\$39.95); receives all channels; new integrated sound circuit replaces 39 components; preassembled, prealigned tuners; high gain IF strip; Gated AGC for steady, jitter-free pictures; front-panel mounted speaker; assembles in only 10 hours. Rugged high impact plastic cabinet measures a compact $11 / 2^{*} \mathrm{H} \times 15^{3} 4^{\prime \prime} \mathrm{W}$ x 9 \% ${ }^{\text {" }}$ D. 27 lbs.

Turn Page For More New Kits From HEATH

9 Kit-Giving Ideas From Heath... Harmony-by-Heathkit Electric Guitars \& Heathkit Guitar Amplifier

Kit TA-16
S12995

© NEW Heathkit Transistor Guitar Amplifier 60 watts peak power; two channels - one for accompaniment, accordian, organ, or mike, - the other for special effects . . . with both variable reverb and tremolo; 2 inputs each channel; two foot switches for reverb \& tremolo; two $12^{\prime \prime}$ heavy-duty speakers; line bypass reversing switch for hum reduction; one easy-to-build circuit board with 13 transistors, 6 diodes; $28^{\prime \prime}$ W. x $9^{\prime \prime}$ D. x $19^{*} \mathrm{H}$. leather-textured black vinyl cabinet of $3 / 4^{\prime \prime}$ stock; 120 v . or 240 v . AC operation; extruded aluminum front panel. 44 lbs.

American Made Harmony-By-Heathkit Guitars

All guitars include instruction book, tuning record, pick, connecting cord, deluxe red leather cushioned neck strap and chipboard carrying case. All wood parts assembled and factory finished - you just mount metal parts, pickups \& controls in pre-drilled holes and install strings.
B Deluxe Guitar ... 3 Pickups ... Hollow Body Double-cutaway for easy fingering of 16 frets; ultra-slim fingerboard - 241/2" scale; ultra-slim "uniform feel" neck with adjustable Torque-Lok
reinforcing rod; 3 pickups with individually adjustable pole-pieces under each string for emphasis and balance; 3 silent switches select 7 pickup combina. tions; 6 controls for pickup tone and volume; professional Bigsby vibrato tail-piece; curly maple arched body - $2^{\prime \prime}$ rim - shaded cherry red. 17 lbs.

© Silhouette Solid-Body Guitar ... 2 Pickups

Modified double cutaway leaves 15 frets clear of body; ultra-slim fingerboard - $241 / 2^{\prime \prime}$ scale; ultraslim neck for "uniform feel"; Torque-Lok adjustable reinforcing rod; 2 pickups with individually adjustable pole-pieces under each string; 4 controls for tone and volume; Harmony type 'W' vibrato tailpiece; hardwood solid body, $1^{1 / 2 "}$ rim, shaded cherry red. 13 lbs.
[0] "Rocket" Guitar: . . 2 Pickups . . . Hollow Body Single cutaway style; ultra-slim fingerboard; ultraslim neck, steel rod reinforced; 2 pickups with individually adjustable pole-pieces for each string; silent switch selects 3 combinations of pickups; 4 controls for tone and volume; Harmony type 'W' vibrato tailpiece; laminated maple arched body, $2^{\prime \prime}$ rim; shaded cherry red. 17 lbs .

NEW! Deluxe Solid-State FM /FM Stereo Table Radio

Tuner and IF section same as used in deluxe Heathkit transistor stereo components. Other features include automatic switching to stereo; fixed AFC; adjustable phase for best stereo;

Kit GR-36 $\$ 5 y^{95}$ two $51 / 4^{*}$ PM speakers; clutched volume control for individual channel adjustment; compact $19^{\prime \prime} \mathrm{W} \times 61 / 2^{\prime \prime} \mathrm{D} \times 91 / 4^{\prime \prime} \mathrm{H}$ size; preassembled, prealigned "front-end"; walnut cabinet; simple 10-hour assembly. 17 lbs.

Something For Everyone

NEW Heathkit* /Magnecord ${ }^{\text {® }} 1020$ 4-Track Stereo Recorder Kit

Kit AD. 16
'39950
(less cablnet)
Save $\$ 170$ by doing the easy assembly yourself. Features solid-state circuitry; 4-track stereo or mono playback and record at $71 / 2$ \& $33 / 4 \mathrm{ips}$; sound-on-sound, sound-with-sound and echo capabilities; 3 separate motors; solenoid operation; die-cast top-plate, flywheel and capstan shaft housing; all push-button controls; automatic shut-off; plus a host of other professional features. 45 lbs. Optional walnut base $\$ 19.95$, adapter ring $\$ 4.75$

NEW Deluxe SB-301 Amateur Receiver Kit NEW Deluxe SB-401 Amateur Transmitter Kit

New SB-301 receiver for 80 thru 10 meters with all crystals furnished, plus 15 to 15.5 MHz coverage for WWV; full RTTY capability; switch-selected ANL; front-paneling switching for control of 6 and 2 meter plug-in converters.; crystal-controlled front-end for same rate tuning on all bands; 1 kHz dial calibrations, 100 kHz per revolution. 23 lbs . Matching SB-401 Transmitter, now with front-panel selection of independent or transceive operation. . . $\$ 285.00$

2-Watt Walkie-Talkie

New . . . Factory Assembled. Up to 6 mile range; rechargeable battery; 9 silicon transistors, 2 diodes; superhet receiver; squelch; ANL; aluminum case. 3 lbs. 117 v. AC battery charger \& cigarette lighter charging cord \$9.95. Crystals \$1.99 ea.

FREE

World's Largest Electronic Kit Catalog!
108 pages ... many in full color ... describe these and over 250 easy.to build Heath hits for color TV, stereo/ hi-fi, CB, ham, marine, shortwave, test, educational, home and hobby items. Mail coupon for your free copy.

NEW Portable Phonograph Kit

Kit GD. 16

39^{95}

All Transistor. Assembles in 1 to 2 hours. Preassembled 4 -speed automatic mono changer; $4^{\prime \prime} \times 6^{\prime \prime}$ speaker; dual Sapphire styli; 45 rpm adaptor; olive \& beige preassembled cab-
 inet; 117 v. AC. 23 lbs.

HEATH COMPANY, Dept. 19-2 Benton Harbor, Michigan 49022

Enclosed is \$ \qquad plus shipping. Please send model (s)Please send FREE 1967 Heathkit Catalog
Na
Ad
Cit \qquad
Address \qquad
Prices \& specifications subject to change without notice. . CL-265

By C. M. Stanbury II

February/March 1967

Starting this issue we have made our propagation forecasts even easier for shortwave listeners to use. If you are DXing at a certain hour, simply run down the left-hand column in the Forecast table until you find the appropriate time slot, then look across to the right and determine what is available on which bands for each major area in the world. Bands in brackets are promising second choices. Time intervals are for your local standard time. If you live in the Central Standard Time (CST) zone then the Time column in our Forecast table is CST.

On the other hand, if you are listening for one particular part of the world only, check
the Peak DX Periods table first to see what time the best DX is available from that area. Follow this time slot across in Forecast table to determine the best bands. If you live in the CST zone, use the Eastern column but deduct 1 hour.

Peak DX Periods

Area	Eastern (EST)	Western (PST)
Asia (except Near East)	$0000-0900$	$1800-0900$
Europe, Near East \&	$1200-2400$	$1200-2400$
\quad Africa (N. of the Sahara)		
Africa (S. of the Sahara)	$1500-1800$	$1900-2300$
	$2200-0200$	
South Pacific	03000600	$0000-0600$
Latin America	$1800-0600$	$1630-0500$

RADIO-TV EXPERIMENTER PROPAGATION FORECAST

Feb.March 1967 LISTENER'S STANDARD TIME	$\begin{gathered} \text { ASIA } \\ \text { (except } \\ \text { Near East) } \end{gathered}$	EUROPE, NEAR EAST \& AFRICA (N . of the Sahara)	AFRICA (S. of the Sahara)	SOUTH PACIFIC	$\begin{aligned} & \text { LATIN } \\ & \text { AMERICA } \end{aligned}$
0000.0300	31, 25	31, 25	$\begin{gathered} 31,60 \\ (25) \end{gathered}$	31, 25	90, 60, 49
0300-0600	$\begin{gathered} 31,25 \\ (49,60) \end{gathered}$	$\begin{gathered} 31 \\ \text { (poor) } \end{gathered}$	$\begin{gathered} 31 \\ \text { (poor) } \end{gathered}$	$(60,90)$	90,60,49
0600-0900	25, 19	19	nil	31	49,31
0900-1200	19, 16	16, 19	16, 19	$\stackrel{25}{(\text { poor })}$	19
1200-1500	$\begin{gathered} 19 \\ \text { (poor) } \end{gathered}$	16, 19	16,19	$\begin{gathered} 25 \\ \text { (poor) } \end{gathered}$	19
1500-1800	16, 19	$\begin{gathered} 25 \\ (19,31) \end{gathered}$	$\begin{gathered} 31,25 \\ (41) \end{gathered}$	$\begin{aligned} & 25 \\ & \text { (poor) } \end{aligned}$	31,49
$1800-2100$	16, 19	$\begin{aligned} & 25 \\ & (19,31) \end{aligned}$	31, 25	25	90, 80, 49
2100-2400	16, 19	$\begin{gathered} 31 \\ 31 \\ (49) . \\ \hline \end{gathered}$	$\begin{aligned} & 31,60 \\ & (90) \\ & \hline \end{aligned}$	25	90,60, 49

To use the table put your finger on the region you want to hear and log, move your finger down until it is along side the local standard time at which you will be listening and lift your finger. Underneath your pointing digit will be the shortwave band or bands that will give the best DX results. The time in the above propagation prediction table is given in standard time at the listener's location which effectively compensates for differences in propagation characteristics between the east and west coasts of North America. However, Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easier to tune on the east coast. The shortwave bands in brackets are given as second choices. Refer to White's Radio Log for World-Wide Shortwave Broadcast Stations list.

the song of the open road

By Bob Angus

Like peas and pods, tapes and cars are pretty much inseparable these days. For the cartridge player has at last found a home for itself-on countless highways and byways throughout the nation.
on what we define as hi-fi and which particular highway hi-fi is under discussion. For the fact is that at the noment, there's not one but three major and several minor systems for putting stereo tape in your car. The majors include the Fidelipac system, developed in 1956 by George Eash; the Lear-Jet system, introduced in 1965 and espoused by Ford and RCA Victor; and the Norelco system, introduced in 1964 but only recently adapted for antomotive use.

Also clouding the picture is a major battle-of-the-systems. At the moment, the industry is going through a set-to reminiscent of the one between RCA Victor (with its 45s) and Columbia (with its then-new LPs) over a decade ago. Significantly enough, no system

tape sings the song of the open road

seems to have a clear technical superiority. Instead, each seems able to provide satisfactory sound reproduction in the car, and at least two of the three have plenty of music available to match most tastes. All three can move from car to home, so you can play the identical cartridge in your car or your living room. And all three, in large part, became possible as the result of the development of reliable, low-cost transistors.

Fidelipac. The Fidelipac cartridge features an endless loop of tape wound around a hub inside a plastic shell. The tape feeds from the pack's center, travels past notches cut in the plastic to accommodate a playback head and pinch roller, then rewinds at the outside of the tape pack. The cartridges are recorded at $33 / 4 \mathrm{ips}$ in four-track stereo and sell at prices ranging from $\$ 2.95$ for about 15 minutes' playing time to $\$ 9.95$ for over an hour's worth of music. Prices for players run from about $\$ 70$ to $\$ 140$.

Fidelipac players are sold by such manufacturers as Craig Panorama; SJB, Inc.; Telepro Industries; Trans-World, Inc.; Midland International; Viking of Minneapolis; Muntz Stereo-Pak; Auto-Sonic; Nu-Vox; Audio Stereo; and Metra Electronics. These and other manufacturers provide a wide range of music from the libraries of MGM,

Command, Verve, ABC Paramount, Westminster, Pickwick, Audio Fidelity, Mercury, Dot, Elektra, and a host of other record companies. Prices for the players themselves vary, depending on whether speakers are included, whether the unit plays back through an existing car radio, whether AM or FM radio is included, and so on.

In view of Fidelipac's lead time over the other systems, it's hardly surprising that an estimated 70 per cent of the car-cartridge players now in use utilize this system. All of these units were bought for cars already on the road. At the moment, Fidelipac also accounts for better than 60 per cent of cartridge sales.

Lear-Jet. Lear-Jet units are to be found mainly in current-model Fords, Mustangs, Thunderbirds, some Mercurys and Lincolns. The cartridge is about the same size and shape as the Fidelipac, and it is also recorded at $33 / 4 \mathrm{ips}$. However, recordings are in eighttrack rather than four-track stereo. Further, unlike the Fidelipac four-track units, a pinch roller is included in each cartridge. Prices for recorded cartridges are comparable to Fidelipac's, and the catalogs include many of the same titles plus albums from RCA Victor, London, Decca, and Capitol. Player prices are comparable to Fidelipac's.

In addition to the units Ford is installing in its new cars, players are available from Lear-Jet and Soundex Corporation for cars already on the road. And Lear hopes to entice General Motors into joining Ford and Chrysler into putting its players in their new cars. "With the auto industry turning out over nine million cars a year," a Lear spokesman said recently, "it looks like something between 15 and 20 per cent of these new

With inputs for mike, tuner, and phonograph, in-home fape-cartridge recorder (below) by Craig Panorama makes perfect mate for Craig's in-car tape player (at right).

cars will have stereo tape playing systems."
Norelco. With all this activity, another cartridge system would seem to have little chance of gaining a foothold. Nevertheless, Norelco last year introduced a dashboard harness for its battery-operated portable tape-cartridge recorder and thus made a bid to capture part of the growing market. And the real breakthrough came when Norelco managed to persuade Mercury Records, Minnesota Mining, General Electric, Sony, Aiwa, Concord, Panasonic, and 31 other firms to adopt its system. Norelco-type players now cost from $\$ 70$ to $\$ 100$ and, unlike the others, are powered by self-contained flashlight batteries.

The Norelco system centers around a twohub cartridge roughly a fifth the size of the other two. Similar to a design that was introduced by RCA in 1959, the Norelco model utilizes $1 / 8-\mathrm{in}$. tape recorded at $17 / 8 \mathrm{ips}$. At the moment, recording is twin-track mono only-but the developers plan to introduce compatible four-track stereo soon. Blank cartridges, which cost from $\$ 2.65$ to $\$ 3.25$, hold 45 minutes of uninterrupted recording and are available from Norelco, Mercury, and Minnesota Mining. Prerecorded cartridges will cost about $\$ 4.95$ for 32 minutes (about the same price as a stereo LP).

Among the machines which now fill the Norelco car harness are the Norelco CarryCorder (\$89.95), the Mercury TS8000 (\$89.95), the Wollensak 4100 ($\$ 89.95$), and the General Electric M8300 Lively Set (about $\$ 90$). Both Norelco and Mercury project four-track stereo models using $1 / 8-\mathrm{in}$. tape at prices around $\$ 150$.

The versatility of a 3-lb. recorder that
operates equally well in a living room, at the beach, or under the dashboard-plus the fact that the owner can record his own fare -are the major assets of the Norelco system. Of course, given the know-how, it is possible to record Fidelipac tapes on a conventional four-track recorder, then load the tape into a cartridge. And Soundex now offers a Lear-Jet record/playback deck, while Roberts has introduced eight-track cartridge record/playback as an extra feature on its model 1725-8L recorder.

But for the most part, Fidelipac and Lear users are limited to commercially-recorded cartridges. At press time, there were only 50 prerecorded Norelco-type cartridges-all monaural, and all from the Mercury, Philips, Smash, Wing, and Limelight catalogs. But more were promised.

SJB, Tenna. For those who can't make up their minds as to which of the three major systems they prefer, there are a number of hybrid compatible units on the market. SJB's line, for example, includes six models, ranging in price from $\$ 100$ to $\$ 170$. The model ST 308, at the bottom of the scale, comes with indicator light. For $\$ 130$ you have a choice of model ST408, with indicator light and automatic light or model $603 \mathrm{M} / 48$, an all-chrome unit with speakers, adjustable bracket, cigarette lighter plug, and carrying handle. Another $\$ 10$ adds FM radio to the ST308. Shell out $\$ 170$, and you have a choice of two compatible tape-FM units, models ST408/FM and 603M/48/FM.

Still another compatible unit comes from Tenna Corporation. Said to be the least expensive on the market, it sells for $\$ 69.95$ and features automatic sensing of cartridge,

Mark 8 player by RCA Victor permits use of 8 -track car-cartridge tapes anywhere in the home. Device comes in two models: unit at left contains built-in speakers, while model below must be attached to stereo system.

tape sings the song of the open road

automatic switch-on, a reject bar, and optional foot switch control.

Homeward Bound. With most of the cartridge problems licked, manufacturers are beginning to design players for the living room (and a few models which can be connected directly to a component hi-fi system). Accepting Lear-Jet cartridges are Soundex's $\$ 80$ player, RCA's Mark 8, and models from Lear-Jet, Roberts, and General Electric. Fidelipac units are available from Muntz Stereo-Pak, Telepro, SJB, and others.

Among the four-track home players are Telepro's Satellite II; and Muntz's A-HW-1, AR-300 and AR-400. The latter two are complete home-entertainment centers with record changer, amplifier and tape-cartridge handler. The AR-400, mounted in a cabinet, also contains two speaker systems, while the AR-300 is the heart of a stereo compact system.

Installation. In theory, some of the prices quoted by manufacturers include installation of the player in your car. In practice, you can save money on virtually any model by installing the unit yourself. Just how much work is involved depends on the type of unit you buy. The Norelco models, for example, simply slip into their harness with no additional work required. Those
which operate through an existing car radio fit in a bracket mounted below the dashboard. (You'll also have to connect the player output to the radio amplifier-often merely a matter of inserting a jack.)

The most complicated to mount are the stereo models with speakers, since you'll have to cut holes for the speakers in your door panels. Which tools you'll need depends on the type of padding your car has inside the door. Speaker brackets and protectors usually are supplied with the do-ityourself kits. Wiring from the player to the speakers is fairly simple, and consists of tucking the wire up under the dash, then running it through the panelling to the point where it neets the door frame.

Sound-Box-On-Wheels. Where does it all lead? Surely eight-track tape must have a significantly higher tape hiss than fourtrack? And isn't it logical to expect $33 / 4$-ips or $17 / 8-\mathrm{ips}$ recordings to sound inferior to $71 / 2$ ips? Actually, there's an aural trick involved. Tapes that sound very ordinary in a living room sound very good (if not excellent) in a car. The trick is similar to the one which permits $31 / 2-\mathrm{in}$. speakers in stereo headphones to produce such startling bass tones.

In short, much of the system's success stems from the setup itself; you're enclosed in a relatively small space with two speakers and are in effect smack in the middle of a veritable sound-box-on-wheels. At the same time, road and traffic noises mask any imperfections in the recording or the equipment so that you hear-or think you hearstrikingly good sound.

In the living room, however, it can be
(Continued on page 115)

Unlike both Fidelipac and Lear-Jet systems, Norelco's cartridge contains two separate reel hubs that unwind and wind in standard fashion. Cassetfe (seen in hand in photo at right) can be used with carplayer (below) or even AM/FM/SW portable.

Volume 47, No. 1

An up-to-date Broadcasting Directory of North American AM, FM and TV Stations. Including a Special Section on World-Wide Shortwave Stations

${ }^{n}$n this issue of White's Radio Log we have included the following listings: U.S. AM Stations by Frequency, Canadian AM Stations by Frequency, U.S. Commercial Television Stations by States, U.S. Educational Television Stations by States, Canadian Television Stations by Cities, and the WorldWide Shortwave Stations.

In Our Next Issue, April-May, 1967, the Log will contain the following listings: U.S. AM Stations by Location, U.S. FM Stations by States, Canadian AM Stations by Location, Canadian FM Stations by Location, and the expanded Shortwave Section. The shortwave listings will always be completely revised in each issue of Log to insure 100 percent up-to-date information. In the June-July, 1967, issue of RadioTV Experimenter, the Log will contain the
following listings: U.S. AM Stations by Call Letters, U.S. FM Stations by Call Letters, Canadian AM Stations by Call Letters, Canadian FM Stations by Call Letters, and the expanded World-Wide Shortwave Section.
Therefore, in any three consecutive 1967 issues of Radio-TV Experimenter magazines, you will have a complete cross-reference listings of White's Radio Log that is always up-to-date. The three consecutive issues are a complete volume of White's Radio Log that offers up to the minute listings that can not be offered in any other magazine or book. If you are a broadcast band DX'er, FM station logger, like to photograph distant TV test patterns, or tune the short-wave bands, you will find the new White's Radio Log format an unbeatable reference.

QUICK REFERENCE INDEX

U.S. AM Stations by Frequency 94
Canadian AM Stations by Frequency 104
U.S. Commercial Television Stations by States 105
U.S. Educational Television Stations by States 107
Canadian Television Stations by Cities 108
World-Wide Short-Wave Stations 109

U.S. AM Stations by Frequency

U. 8. stations Ilsted alphabetleally by states within groups. Abbreviations: $k H z$. frequency in kllocyeles: W.P., power in watte: d, operates daytime only; n, operates nighttime only. Wave length is given in meters.

540-555.5
KVIP Redding. Callf. KFMB San Diego, Calif
wDAK Columbus, Ge
Fia. 50000d KBRV Soda Springs. Idahe s00d KWMT Ft. Dodse. lowa WDMV Posemeks WBiC Islip. N.Y. WETC Wendeli-Zobulon

WARO Canansbura, Pa WYNN Florence, 8.C. WRIC Richlands. Ya.

550-545.1
KENI Anehorane, Alaska KAFY Bakersfold, Callf WAYR Orange Perk wGGA Gainosville. Fle KGVA Gainesvilie, Ga. KFRM Salina, Kans. WCBI Columbers. Miss. KSD St. Louls. Me. KBOW Butts. Mont WGR Bunlop. N.Y. WDBM Statesvilis. N.C. KFYR Bismarek. N.Dak. WKRC Cincinnati, Ohio KOAC Corvallis Ohio WHAC Corvalis. Oreg. WPAB Pance. P.R. WXAB Pance. P.R. R.I. KCRS Mldland. Tox. KTSA San Antenlo. Tex. WDEV Waterbury, Vi. KARI Blaine wash. WSAU Wausau, Wis.

560-535.4

WOOF Dothan, Ala. KYFO San Fran., Celif. WGAM Miami, Fia. WIN WGIK Middiesborn, Ky. WGAN Pertland, Malne WHYN Sprlnghaid. Mass. WQTE Monroe. Mieh. KwTO Dulvim. N. KWTO Sprinpfield, Mo. WGAI Elizaboth City. N.C. WFIL Philadelphia, Pa. Wis Columbla. S.C WHBQ Memphis. Tenn. KLVI Beammont. Tox. KPQ Wenatchee. Wash. WJLs Beckley. W.Va.

570—526.0

WAAX Gedsdon, AIa. KLAC Los Angelos, Calif. GGM Washington, D.C. WFSO Pinellas Park, FIa. WACL Wayeross, Ga. WKYX Paducah, Ky. WVMI Biloxi, Miss. KGRT Las Cruces, N. Mex. WMCA NOW York. N.Y. WSYR Syracuse, N.Y, WWNC Asheville. N.C WLLE Raleīh. N.C. WKBN Youngstown. Ohlo WNAX Yankton, S.Dak. WFAA Dailas, Tex.
Md. $\quad 5000$
N.C. 250 d $250 d$
$250 d$ $250 d$
000 d 1000 d 250

5000
5000
1000
1000
5000
1000
5000d
5000
1000
5000
$500 d$
5000
5000
5000
1000
5000
1000
5000
5000
5000
5000
5000

5000d
1000
5000
5000
5000
500 C
5000
1000
1000
5000

00

5000
5000
5000

5000 $\$ 000$

5000
5000
5000
5000

1000
$1000 d$
1000 d
5000
5000
5000
500 d
5000
5000
5000
5000 KAVL Laneaster. Calif.

Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of course, only information available up to press-time cauld be included. Copyright 1966 by Science \& Mechanics Publishing Co., a subsidiary of Davis Publications, Inc., 505 Park Avenue, Now York, New York 10022.

Hz Wove Length W.P

KFRC San Francisec, Calif. 5000 WTOR Torrington. Conn. 250 WMEL Pensacola, Fla. WCEH Hawkinsville, Ga. KUAM Agana, Guam KRUS Russeliville, Ky WDAF Kansas City. M KOJM Havre. mont. KCSR Chadron, Nobr. KCSR Chadron, Nobr. $\quad 10000$ WGR Manchester. N.H. 5000 WAYS Chariotte, N.C. WTVN Coiumbus, Ohio WIP Phladelphia, Pa. KILT Hauston. Tox. KVNU Lopan. Utah WSLS Roanoke. Va. WHPL Winchester, Va.
KEPR Kennewick-Riehmond.

Pasce, Wash. 5000

620_-483.6

KTAR Phoonix, Ariz. KNGS Hanford, Callf. 1000
KWSD Mi. 8hasta, Callf. 1000 d K\&TR Grand Junction. Colo. 5000 d WSUN St. Petersbure. Fla. KTRP LaGranje, Ga, KWAL Wallaes, Idaho WTHT Loulsville. Ky. WLBZ Bancor. Malne WVNJ Nowsark. Miss. WVND Newark, N.d. WDENC Durham, N.C. KGW Portland, Ora.. WHCAY Greensbure. WATE Knoxville, Tenn. KWFT Wichita Falls. Tex. wWNR Becklay iw V_{s}. WTM」 MIlwalkee. Wis.

WAVU Albertville. Ala. WJDB Thomasvilie, Ala. KJNO Juneau, Alaska KVMA Magnolia. Ark. KIDO Monteroy, Callf. KHOW Danver, Coio. WMAL Washington. D.C. WSAV Savannah. Ga. WNEO Toesen, Ga. KIDO Boiss, Idaho WLAP Lexington. Ky. KTIB Thibodaux, La. W1 MS Ironwood, Mich. KDWB So. St. Paul. Minn. KXOK St. Louis. Mo. KOVW Belgrade. KOH Rene Nev.
KLEA Loviniton. N.Mex. W)RC H lekory. N.C. WMFD WIImington. N.C. KWRO Coquilie, Ores. WEAL Seranton. Pa. WKYN San Juan. P.R. WPRO Providence. R.1.
KMAC San Antonio. Tox. KMAC San Antonio. Tox.
KSXX Salt Lake Clty. Utah KSXX Salt Lake City.
KGDN Edmonds. Wash. KGDN Edmonds, Wash.

640-468.5

KFI Los Anpeles, Callf. WOI Ames. lowa WNAD Nerman. Okla.

650-461.3
5000
1000

680-440.9
KNBR San Francisce, Cal. 50000 WPIN St. Potersburg, FIa, 1000 d WATY N. Atianta, Ga. WCTT Corbin. Ky,
wCBM Baltimore. WNAC Boston, Miss. WDBC Estanaba, Mieh.
KFEO St. Joseph. Me. WINR BInghamton. N.Y, $\begin{array}{ll}\text { WNYR Roehester, N.Y. } & 1000 \\ \text { WPYF Ralelat. } & 250\end{array}$ WPTF Ralelgh. N.C. 50000
WISR Butler, Pa. $\begin{array}{ll}\text { WAPA San Juan. P.RIec. } & 10000 \\ \text { WMPS Memphis. Tonn. } & 10000 \\ \text { KBAT San Antonio. Tex. } & 50000\end{array}$ KOMW Omak. Wash. 1000 d
WCAW Charloston. W.Va. 10000 d 690-434.5
WVOK Birmingham. Ala. 50000d
KEOS Flagstaft. Ariz. $\quad 1000$ KEVT Tucson, Ariz. KABA Bonton. Ark. WADS Ansonia. Conn. WAPE Jacksonvilie, Fla. KULA Honolulu. Hawail KBLI Blackfoot. Idaho KGGF Conteyville. Kans.
WTIX New Orleans, Li. KTCR MInnoapolls, MInn. KSTL 8t. Louis. Mo, KEYR Terrytown, Nebr. 1000 d KRCO Prineville, Oreg. $\quad 1000 \mathrm{~d}$
WXUR Medil. Pa. KUSD Vermiliion. S.Dak. KHEY EI Paso. Tex. KPET Lamesa. Tex. KZEY Tyler, Tex. WCYB Bristol. Va. WNNT Warsaw, Va.
WELD Fisher, W.Va. 700-428.3

WLW CIneinna $710-422.3$

 WKRG Moblle, Ale. 1000 $\begin{array}{lr}\text { KMPC Los Angeles, Calif. } 50000 \\ \text { KETR Denver. Cole. } & 5000\end{array}$ WGBS Minm, Fla. WUFF Estman.WROM Rome, Ga. KROM Rome, Ga. KEEL 8hrovepart, La,
WHB Kansas City, Me. WOR Now York, N,Y
DZRH Nanlla. P.I. WKJB Mavalaues, P. Rles WTPR Paris. Tenn. KGNC Amarilio. Tex. KIRO Seattle, wash. WOSm supariar
$720-416.4$

KUAI Eleele. Hawall	5000
WGN Chicano. Ill.	50000

WJMW Athens, Als.	1000
KSUD W. Memphls, Arik.	250 d
WLOR Thomasville. Ga,	5000 d

WSM Nashvilla. Tann.
KIKK Pazadona. Toxas
660-454.3
KFAR Falrbanks. Alaska KOWH Omaha. Neb. WNBC New York. N. WESC Greenville. S.C. K\&KY Dallas, Tex
670-447.5
KBO: Bolse. Ida.
wMA Chisere. ill. WMGS Bowling Green, Ohio KBOY Medford, Oren. WNAK Nanticils Pe. WPIT Pittsburdh. Pa. WPAL Charleston. WLIL Lenoir. Tenn. KSVN Opden. Utah WMNA Gretna Vi, Va.
50000
1000d
$1000 d$
lo00d
$1000 d$
1000 d
1000 d
5000 d
1000 d
1000 d
500 d
1000d
5000 d
1000 d

kMz Wave Length W．P．

940－319．0

KHO8 Tueson．Arlz． KFRE Fresno，Callip．
WINE Brookfield，Conn． WINZ Miami，Fia．
KAHU Waipahu，Hawai
mix mi．Vernen．III． WCND Shelbyville，Ky． WIDG St．Ignace，Mich． Wjoh south Haven，Mich． KSWC Houston，Miss．
KVSH Valentine．Nebr． wCNC Fbyitevilio，N，C
WCND Shelbyvilie，N．Y．
KGRL Bend O
KWHC Woodburn．Ore
WCiP Graenvilio，Pa．
YIPR San Juan．P．R
KTOM Emarino．Tor
KTOM Belton，Tex．
WNRG Grundy，Va．

959－315．6

WRMA Montgomery，Ala
KXBH Sotward．Alaska KFSA Ft．Smith．Ark． KAHI Amburn，Calif． KMN Denver，Cots． WLOF Ordando，Fla， WBOV Valdesta，Ga． KLER Oronine，Idiaho WAAF Chicigo，Il． YKLW Indianapolis．Ind． 5000 d KJRG Newton，Kans． WAGM Prosnue Islon Maino

WRYT Roston．Mass．

 WHI Sitroit Mich． 5000 d KLIK Jeflecson City，Miss． 5000 d WHVW HYde Park．N．Y．WBBF Rochester．N．Y．
WBEF Rochester．N．Y．
WPBX Utlea．N．Y．
WYES Greensbere，N．C
KYE8 Rosaburf．Orag．
WPEN Philadelphia，Pa． WSPA Spartanburg．S．C． WAGG Franklin．Tenn．
O8X 1000 d KPRC Houston．Tex． WXCI RTchmond，Va． WJR Soattlo．Wash． WKAS Charieston．W V WKTS Shaboygan．Wis．

960－312．3

WBRC Birmingham．Ala．
KOOL Phocrix．Ari
KAVR Apple Valley KAVR Apple Valley，Calit．5000d KAEZ Lompoe，Calf． WELI New Haven．Conn． WGRO Lake city．Fla． WJaz Slbany．Ga． WRFC Athens，Ga， WOLM E．Moline．III． W SBT South Bend．Ind， WPAT Shenandoah，Iowa WPRT Prastonsburt，K
KROF Abbeville．La WBOC Sallsbury．Md． $\begin{array}{ll}\text { WFGM Fitenburg．Mass．} & 5000 \\ \text { WHAK Rogers City．Mieh．} & 1000\end{array}$ KLTF Little Falls．Mich． 3000 d WABG Grecnwand，Miss． KFV8 Cape Girardenu．Mo．
KFLN Baker．Mont．
50
d
d
000d
$250 d$
$250 d$
0000
5000
1000 d
s. 250
250
1000d
1000
s00Ud
1000
5090 d
5000
5000
5000
00d W
000 W

50000
$1000 d$
50000
50000
10000
$5000 d$
10000
$1000 d$
10000
5000
$1000 d$
$50000 d$
. C.

KNEB Seottsbluff．Nebr， 1000
KWWK Farmington，N．Mex． 1000 d KWYK Farmington，N．Mex． 1000 d
KRIK Roswell．N．Mex． 1000 d WEAV Plattsburi，N．Y． 5000 WAAK Dallas，N．C． WFTCT KInston．N．C．
WGWA Eoster．Ohio $\begin{array}{ll}\text { KGWA Enid．Okiar } & 1000 \\ \text { KLAO }\end{array}$ KHYL Carlisio，Pa．Oren． 5000 d
WH2
WOA Kat WKZA Kane，Pa， WATS Sayre，Pa．

K

KIMP Mt．Pleasant，Tex．
KGKL San Angelo．Tox． KGKL San Angelo．Tex．
KOVO Provo．Utah WOBJ Roanoke．Va． KALE Riehland．Wash． WTCH Shawano，Whis．
WERH Hamilton, Ala.
WTBF Troy. Ala.
KVWM Show Low, Ariz.
KNEA Jonesboro, Ark.
WRCS Ahostich. N.Y.
WWIT Canton. N.C.
WOAY Fanton. N.C.
WREO Ashtabula, Ohio
WATH Athensula, Ohio
KAKC Tulses, Ohio
KAKC Tulsa, Okla.
WWSW Plitsburgh Pr.
WWSW Pltsburgh. Pa
WJMX Florence, S.
KBSN Ausin. Tex.
KBSN Crane, Tex.
KNOK Ft. Worth. Tex.
WIVI Christiansted, V. I
WYPR Danville, Va.
WANY Waynesbors.
KREM Spotsan Winh
KREM Spokan. Wash.
WHA Madison w.
WHA Madison, Wis.
980-305.9
WKLF Clanton. Ala.
WXLL Bic Dolta, Alsska
KCAB Dardanelle, Ark.
KıNS Euroka. Callf.
KEAP Fresno. Calif.
KEAP Fresno. Calif.
KFWB Los Angeles, Callf. 5000
KCTY Salinas. Calf.
I000d
KGLN Glennwood Springs.
Colo. 1000 d
WSUB Groton. Conn.
WSUB Groton, Conn.
ค.
WOYH Gainesville, Fib.
WTOT Marianna, Fia.
WBOP Pensacola. Fla.
WLOD Pompano Beach. Fia.

| KFRO Rosenterg. Richmond, |
| :--- | :--- | :--- |

 kHz Wave Length W.P.
 | wCST Berkeley Spras．．W． W8PT Stevens Pt．，Wis． | $\begin{aligned} & \text { a. } 250 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$ |
| :---: | :---: |
| 1020－293．9 | |
| KGBS Los Anseles，Calif． | 50000 |
| WCIL Carbondale，III． | 1090d |
| WPEO Peorit，III． | 10000 d |
| KSWS Roswmil，N．M． | 50000d |
| KOKA Pittshurgh，Pa． | 50000 |
| 1030－291．1 | |
| WBZ $\begin{aligned} & \text { Boston，Mast，} \\ & \text { KCTA } \\ & \text { CorDus } \\ & \text { Christi，Tox．}\end{aligned}$ | 50000 500000 |
| 1040－288．3 | |
| KHVH Henelulu，Hawall WHO Dea Moines，lowa | $\mathbf{5 0 0 0}$ 50000 |
| KIXL Dallas，Tex． | 1000d |
| 1050－285．5 | |

WRFS Alexander City，Ala．I000dKTOT Bie Bear Lake，Cal． 250 d
KOFY San Mateo Calip．KWSO Waseo，Calif． 1000 d
KWKWSO Waseo，Calif． 1000 d$\begin{array}{ll}\text { WISE Crestriaw，Fla．} & 1000 \mathrm{~d} \\ \text { WIVY Jacksonville，Fla．} & 1000 \mathrm{~d}\end{array}$
WIVY Jacksonville，Fla． 1000 d
WHBO Tampa，Fla．

WRMF Titusville, Fla.
WAUG Aupusta. Ga.
WMNZ Montezuma, Ge, 5000 d
WOZ
WTCA Plymouth.
WTCA Plymouth. Ind. 250 d
KUPK Garden City, Kan. 5000 d
WNES Contral City. Ky. 500 d
KLPL Lake Providenes. La. 250 d
$\begin{array}{ll}\text { KCIJ Shroveport, La. } & 250 d \\ \text { KYPI Villa Platte, La, } & 250 d\end{array}$
$\begin{array}{ll}\text { KYPI Vila Platte, La. } & 2500 \\ \text { WMSG Oakland, Md. } & 500 \mathrm{~d}\end{array}$
$\begin{array}{lr}\text { WMSG Oakland. Md. } & 500 \mathrm{~d} \\ \text { WOMR Silver 8pry. Md. } \\ \text { WPAG Ann Arber. Mich. } 5000 \mathrm{~d}\end{array}$
KLOH Pipestoner, MInn. 1000 d
$\begin{array}{lll}\text { WACR Columbus, Mins. } & \text { 1000d } \\ \text { KMIS Portagevilie. Mo. } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { KMIS Portagevilie. Mo. } & \text { lo00d } \\ \text { KSI8 Sedalia, Mo. Mr } & \\ \text { KI000d }\end{array}$
KSI8 Sedalia, Mo. Nov. \quad I000d
KLYC Las Vapas, No0d
WBNC Conway, N.H. N. $1000 d$
WSEN Baldwinsvillo, N.Y. $250 d$

$\begin{array}{ll}\text { WYBG wassena, N.Y. } & 1000 \mathrm{~d} \\ \text { WHN Now York, N.Y. } & 50000 \\ \text { WFSC Franklin, N.C. } & 1000 \mathrm{~d}\end{array}$
WF8C Franklin, N.C. $\quad 1000 \mathrm{~d}$
WLON Lineolnton, N.C. 1000 d
WWGP Sanford,
WWGP Sanford, N.C.C. $\quad 1000 \mathrm{~d}$
WZIP Cincinnati, Ohia
$\begin{array}{ll}\text { WZIP Cincinnali. Ohia } & 1000 \mathrm{~d} \\ \text { KCCO Lawton, Okla. } & 250 d\end{array}$
KCCO Lawton, Okla.
KFMJ Tulsa, Dkla.
KEED Springneld.Eusene.
1000 d
KEED Springfield.Eugene,
Ore. 1000 d
$\begin{array}{ll}\text { WWOS Everett. Pa. } & 1000 \mathrm{~d} \\ \text { WLYC Williamsport. Pa, } & 2500 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { WLYC Williamsport, Pa, } \quad 1000 \mathrm{~d} \\ \text { WSMT Sparta, Tenn. } & 1000 \mathrm{~d}\end{array}$
WSMT Sparta. Tenn. 1000 d
KLEN Killeen. Tex.
KLEN Killeen. Tex.
KFAZ Liberty. Tex.
$\begin{array}{ll}\text { KFAZ Liberty, Tex. } & 250 d \\ \text { KCA8 8laton Tex. }\end{array}$

WGAT Gatecity, Va. $\quad 1000 d$
WBRG Lynehbure, Va. $\quad 1000 d$
WBRG Lymehbure, Va. $\quad 1000 \mathrm{~d}$
WCMS Norfolk. Va.
KBLE Saattle. Wash. \quad 1000d
WCEF Parkersburg. W. Va. 5000 d
WEC
WCEF Parkersbure. W. Ya. 5000 d
WECL Eau Claire. Wis, 1000 d
WKAU Kautaunat WIs.

WKAU Kaukauna. Wis. $\quad 1000 \mathrm{~d}$	
WLIP Kenosha Wis.	2000

$\begin{array}{ll}\text { WLIP Kenostha, Wis. } & \text { 250d } \\ \text { KWIV Deuglas, Wyo. } & \text { 250d }\end{array}$
1060-282.8
$\begin{array}{lr}\text { KUPD Tempe, Arls. } \\ \text { KPAY Chico, Calit. } & 500 \\ \end{array}$
$\begin{array}{lr}\text { KUPD Tempa, Arls. } & 500 \\ \text { KPAY Chite, Calif. } & 10000 \\ \text { KLAO Longmont. Colo. } 10000 \mathrm{~d}\end{array}$
WRHL Rochelle, III.
WNOE New Drieans, La. 50000
$\begin{array}{lll}\text { WHOE Benton Harbor. } & 50000 \\ \text { St. Joseph. Mich. } & 5000 d\end{array}$
St. Josoph. Mich. 5000 d
KFIL Preston. Minn.
KNLV Ord. Nob.
WMAP Menres. N C
KNLV Ord, Nob.
1000
$1000 d$
WMAP Monros. N.C.
1000 d
WBYB St. Pauls.
WOID Canton. 0.
5000 d
50000

WRJS San German, P, R, 250
WALD Watterbore, S.C. 1000 d
WPHC Waverly. Tenn. $\quad 1000 \mathrm{~d}$
1070-280.2
WAPI Birmingham, Ala. 50000
$\begin{array}{ll}\text { KAP Birmingham, Ala. } & 50000 \\ \text { KNs Anfales. Calio. } 50000\end{array}$

WVCG Coral Gables. Fis. 10000

WIBC Indianapolis. Ind. 50000
$\begin{array}{ll}\text { KFOI Wichita, Kans. } & 50000 \\ \text { KHED. }\end{array}$
$\begin{array}{lr}\text { KHMO Hannibal. Mo. } & 5000 \\ \text { WHPE High Point N. } & 10000\end{array}$
WHPE High Point, N.C. 1000 d
WKOK Sunbury, Ponn. 10000
WKOK Sunbury, Ponn. $\quad 10000$

WMIA Artcibo. P. R.
WFLI Lookout Mtn. Tenn. 50000
5000

WFLI Lookout Mtr.: Tenn. 50000
WDIA Memphis. Tenn. 50000
$\begin{array}{ll}\text { WOIA Memphis. Tenn. } & 5000 \\ \text { KOPY Alice. Tex. } & 1000\end{array}$
KOPY Alica. Tax.
1000
KNNN Friona, Tex.
10000 d
Fla. 10000 d
VIraln Islands 1000
$\mathbf{5 0 0 0 0}$
City.
Tex.
WVOP Atlanta, Ga.
KBEE Modesto, Callf.
KFEL Puebio. Colo.
WBOM Jacksonville. Fla
WFLA Tampa. Fla.
WIIN Atlanta, GIa.
WVOP Vidalia, Ga.
KPUA HIl. Hawail
KAYT Hupert, Idaho
WMAY Sprinenald
WMAY Sprinenald. Ill.
WAVE Loulsvile, Ky.
KSYL Aloxandria, La.
KSYL Aloxandria, La.
WC8H Portiand. Maine
WAMO Aberdeen, Md.
WCKO Southbridge, Mass.
WKHM Ispoming, Mich.
1a．$\quad 1$
WKHM Jackson. Mieh.
KQAQ Austin, Minn.
KOOK Billinus. Mont.
KOOK Billinis. Mont.
KJLT No. Platie Neb.
KOOK Billinis. Mont.
KJLT No. Platte, Nebr.
KYEG Las Vegas, Nev.
WJRZ Newark. N.J.
WJRZ Newark. N.j.
KDCE Espanola.
KDCE Espanola. N. M
WEBR Bufalo. N.
WEBR Buffalo, N. $Y_{\text {. }}$.
WCHN Norwich. N.
Fla.

```970-309.1```
 $970-309.1$

KNEA Jonesbioro, Ark.
KBIS Bakersfold. Callf.
KCHV Coathella, Callf.
$\begin{array}{r}100 \\ \\ 100 \\ \hline \quad 50 \\ \hline\end{array}$

WFHG Bristol, Va.
WMEK Chase City. Va.
sid
eid
828

$\begin{array}{lr}\text { KUTI Yakime, Wash. } & 500 \mathrm{~s}, \\ \text { WHAW Weston. W,Va. } & 1000 \mathrm{~d} \\ \text { WCUB Manitowos. Wis. } & 1000 \mathrm{~d}\end{array}$

をさミス W
w
w
w
KFAB Menver, Colo.
HOD Drland, Fla.
IIf. 10

	WHOD Drlando. Fia.	50000
WOWD Dawsen. Gad.	1000 d	
5000 d	WGML HInesville Ga.	250 d
5000	KTRG Honolulu, Havall	5000

 W000d
 5000
WTRML Hinesvilie, Ga
1000 d
WCAZ Carthate, Havall
5000
1000 KTRG Honclulu, Hae
1000 WCAZ Carthase. Ill.
1000 WITZ Jasper. Ind.

000	
WCAZ Carthage. Ill.	
000	WITZ Jasper. Ind.
WERK Muncle. Ind.	

 10000
 10000
 1000 d
1000 d1000
1000 d
WERK Muncle, Ind.
KAYL 8torm Lake. Iowa
KRSL RUssell. Kans.
KAYL 8torm Lako. Iowa
KRSL RUssell. Kans,
WNNR New Orleans. La,5000
50000500
5000
5000
$\begin{array}{ll}\text { WNNR New Orleans, La. } & 250 \mathrm{~d} \\ \text { KRIH Rayville, Las. } & 250 \mathrm{~d} \\ \text { WCRM Clare, MIeh. } & 250 \mathrm{~d} \\ \text { WABO Waynethoro. Miss. } & 250 \mathrm{~d}\end{array}$

| 5000 | WCRM Clars, MICh. | 250 d |
| ---: | :--- | :--- | :--- |
| 5000 d | WAB W Wayneboro. Miss. | 250 d |
| 5000 d | KRMO Monett. Mo. | 250 d |

5000 d	WABO Waynetiono. Miss.	250 d
5000 d	KRMD Moneft. Mo.	250 d
1000	KSVP Artasia. N. Max.	1000
1000 d	WEEB Southera PInas. N.C. 5000 d	

1000	KSVP Artesia, N.Mex. 1000
1000 d	WEEB 8outhera. PInes, N.C. 5000 d

00	WJEH Gallipolis. Ohic	1000 d
00	WTIG Massillon. Ohie	250 d
KRKT Albany. Ores.	250 d	

 ェッチン
 8898
500
1000 d
5000 d
1000
1000 d
$100{ }^{2}$ W
$\begin{array}{ll}\text { KRKT Albany, Orefie } & 250 \mathrm{~d} \\ \text { WIBG Philadelphia Pa }\end{array}$

MMITE゙S		Hz Wave Length	W.P.	L		kHz Wave Length	W.P.
			000	KCCB Corning, Ark.			
		$12 \mathrm{Zai}$	1000	KBHC Nashville, Ar	$0 \mathrm{~d}$	O Grants Pasis, Dres.	$\begin{aligned} & 500 \mathrm{~d} \\ & 5000 \mathrm{~d} \end{aligned}$
		KBEK Elk City, OK	250	KYA San Franciseo.	5000		5000
		KBEL Idabel, Okia	250	KSNO Aspen, Col	5000d	KNWC 8loux Falls, 8. Dath.	000
		KOKL okmulgee, OkI	1000	WCRT Birmingh	$5000 \mathrm{~d}$		$\begin{aligned} & 1000 \\ & 000 \mathrm{~d} \end{aligned}$
		KFLY Coryalis, Or	0000	K	1000 d	Klox Bay City, Tex.	100
		KPRB R		OK Nowar			0d
		KQEN	00		5000	KEP8 Ex	
kHz Wave Length	W.P.	Ito					00
		w BAX Will	000		00	-	0d
WARF Jasper, Ala.		W BAX Wilkes. Barre. Pa	1000	WWPF Palatka, Fla	1000	KCVL Col	1000 d
KVRD Cottonwood, A		WALO Hu	1000	WHAB Baxiey, Ga.	000d	KBAM Londvlow, Wash	
K20W So. of Globe, Ariz.	1000		1000	WBBK Bl	1000 d	WRJC M	Od
K VRC Arkadelphia, Ark.	250	WOXY	1000	KTEE Idahe Falls, Id	50000 d		000d
KTLD Mountain Home, Ark.	1000	KCCR Pler	1000	KWEI Welser, Ida.	5000 d	KIML Gillstte.	5000
KWAK Stuttgart, Ark.	250	WBEJ Ellzabothton, T	1000	WIBV Bellevile.	5000 d	2	
PLY Creseent City, Calif.	250	WEKR Fayottovilis, T	1000	WFBM Indianapo	3000d	2	
KOAO Lemoore. Cal.	250	WBIR Knoxville, Ton	1000	KFGQ Boone, lowa	1000 d	D Piedm	d
PPC Pasadena.	1000	WKDA Nashille. Ton	1000	KWHK Hutchinson. Kans.	1000	T Tuscaloosa.	00
KLPA Pasadena. Calif	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	WENK Union City, Tann.	1000	WAIL Baton Rouge, La.	$1000 d$	HEP Pheonix. Ariz.	
KROY Sacramento, Calif.	1000	KEAN Brownwood. T	1000	W	5000	KNBY	1000 d
		KORA Bryan, Tex.	1000	w	5000	Kı	
Son can Califor		KOCA Kilge	1000	KROX Crookston,		KFDX Long	0
KSDN San Diego, Callif	250	KSOX Raymondvillo, Tox.	250	KOUZ Hutehins	1000 d	KCJH 8an Luis	
KSMA Santa Maria	0	KCKG Sonora, Tex.	1000	WGVM Greenville, Miss.	$5000{ }^{\text {d }}$	KJOY 8tockton. C	0
KROE Susanyilie, Calif.	10000	K $\times 0 \times$ Sweetwater, Tex.	1000	WNSL Laurel, Miss.	5000 d	KTLN 0	0
KOGO Durango. Colo.	1000	WSSV Petersburg,	1000	WCSA ${ }^{\text {Kip }}$	50		d
K8LV Monte Vista. Colo.	1000	WROV Roanoke. Va.	1000		0		
KCRT Trinidad, Colo.	250	WTON Staunton, Va.	1000				
W WCO Waterbury.	1000	KXLE Ellonsturg. W	1000		1000		500]
WBGC Chipley, Fis	1000	KGY Olympia, Wash.	1000	R Bome	1000 d	WIBE M	5000d
LCO Eustis, Fla.	000	WKOY Bluefeld, w.Va.	1000	WNDR Syrs	5000	WM RO A	1000d
NK Ft. ${ }^{\text {dy }}$	1000	WTIP Charleston, W.V.	1000 d	WGWR Ashebor	5000	WGBF Evansville. In	00
FOY St. Augustine, F	1000	WONE Elkins,	1000	WCOJ Edenton, N.C.	1000 d	KCOB Nowton. 10	Od
WBHB Fitzgerald. Ga.	1000	W	10000	WXX Clo	3000	KSOK Arkansas C	
WOUN Gainesvilio. Ga.	1000		10	WWST Portsmouth, Ohis			
WLAG Lagrange, Ga.	1000	WJMC Rice Lake. wia	1000				Od
ML Macon, Ga.	1000	KFBC Cheyonne, wyo.	1000	KMCM MeMinnvill		w	5000d
WWNS Stat	1000	KEVA Evanston, Wyo.	1000				
WPAX Themasville. Ga.	1000	KASL Noweastlo, Wyo.	250	WPHB Philipsburi, Pa	5000d	K	00
WA Thom	250	KRAL Rawlins.	1000	WISO Pance.	00	KDKD Clinton,	1000d
FII Mountain Home. Idat	250	KTHE Thermopolis, wyo.	1000	WMUU Greenville, S.C.	500	KYRD Potos	
KMCL MeCall, Ida.	1000	1250-239.9			1000 d	KCNI Broken Bow	1000 d
KWIK Pecatello. Idahe	250			WNOO Chatta	1000d	KR2O Fenderson. NeV.	5000d
OC chieago. III.	1000	WETU Wetumpka.		WMCH Chureh Hili, Ten	1000d	WADO Now	0
SBC Chicaso. III.	1000	KAKA Wiekenburg. Ariz.	500 d	ckson.	1000d		
WEBQ Harrisburg. I	1000	KFAY Fayetteville, Ark.	1000 d	WCLC Jamestown. Ten	1000d	W8AT 8a	1000
WTAX Springiold,	1000	KALO Little Rock. Ark.	1000	KSPL Dibe	1000d	W YAL Scotiand Neek, N.	
80R Sterling, llt.	500	KHOT Madera, Calif.	500d	KP80 Fallurrias,	500d	WONW Defrnee, Ohle	00
WHBU Anderson, Ind.	1000d	KTMS Santa Barbara. Calif.	000	KWFR San Ang	1000 d	WLMJ Jackson. Ohio	1000d
KDEC Decorah. Iowa	1000	KOHI Twenty.Nine Palms,		KTUE Tulia. Tex.	1000 d	KLCO Poteau, Okla.	1000 d
KWLC Docorah. lowa	1000	Callto	1000d	KTAE Taylo	1000 d	KERG Eus	5000
K B1Z ottumma. low	1000	KMSL Ukiah, Calli.		WCHV Charlottesville, Va.	5000	WBRX Berwick.	$0000{ }^{0}$
KICo Spencer, lowa	1000	KICM Golden, Colo	1000d	WhJ Christians	1000d	WHVR Han	
KIUL Garden City,	1000	WNER Live oak. Fla.	1000 d	W Y V Moses Lake. Wa	10000	WCST Now castio. Pa	1000
KAKE Wiehitw, K	250	WDAE Tampa, Fia	5000		500		000
WINN Leuisvilie,	1000	WYTB Albany, Ga.	1000d				
WFTM Maysville,	1000		5000d	WEKZ Monros, Wis.	$\begin{aligned} & 1000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$	KBHB Stur	
WPKE Pikovilio. Ky.	1	WGL Ft. Wayno. Ind.		WOCO 0conto, Wle.		W MCP Columbla, Ton	1000d
KASO minden, La.	1000	WRAY Princeton, Ind.	1000 d	K	5000	T Dayton, Tenn.	1000d
KANE New lberia.	1000	KCFI Codar Falle	500 d	1270-236.1		Abilene, Tex.	500d
WCOU Lewiston, Maine	1000	WREN Towren	5000			KLUE Langriew. T	
WCEM Cambrideo, Md	1000	W NVL Nicholisvill		WGSV Guntersville. Al	1000 d		500
WJEJ Hagorstown,	1000	WLCK Seottsville. Ky.	500d	KBYR Prichard, Ala		KVWG Pearsall. Te	00d
WHAI Groenfeld, Mass.	250	WGUY Bansor, Maine	5000 d	K0ji Holbrook		Salt Lake City.	
WOCB W, Yarmouth, Mass.	1000	WARE Ware. Mas	1000	KADL Pine Blunt, Ark.	5000 d	WYVE Wytheville.	1000 d
WATT Cadiliac, Mich.	1000	wxox bay city	100	KBLC Lekeport. Ćalif.	5000 d	KMAS Shelton.	10000 d
WCBY Cheboypan. Mich.	1000	KOTE Fergul Falls. Minn.	100	KGOL Paim Desert. Cal.	50		5000d
WJPD ishpeming. Mieh.	1000 10008	KCUE Red Wing. Minn. WHNY MeComb Miss.	1000 d 5000	KCOK Tulare, Calif.	5000 d		$\begin{aligned} & 5000 \\ & 1000 \mathrm{~d} \end{aligned}$
WMFG Hibbing, Minn.	1000	KFMO Flat River, Mo.	1000	WHOG Naples, Fla.	500 d	WNAM Neenah, ${ }^{\text {W }}$	5000
KPRM Park Rapids. Minn.	1000	KBTC Houston, Wo	500d	WHYT Oriando. Fla.	5000 d		
WJDN St. Cloud, MInn.	1000	WKBR Manchester, N.H.	5000	WNO	5000	1290-232.4	
WMPA Aberdeen, Miss.	1000	WMTR Marris town, N.J.	5000 d	WHYO Columbus, Ga	5000 d		
WGRM Greanwoad, Mis	250	WIPS Tieonderoea, N.Y.	1000d	wJJC Comm	1000 d	WSHF Sham	
WGCM Guliport. Miss.	1000		5000d	KNOI Honolulu, Hawall	5000	wMLS Sylacauga. Ail	1000d
WMis Natchez. Mlss.	$\begin{array}{r} 250 \\ 1000 \mathrm{~d} \end{array}$	WK日X Hamlet, N.C.	1000d	KTFI Twin Falis, Idah	50	KCUB Tueson, Ariz.	1000
KODE joplin, Mo. Wo. 10	1000d	WCHO washiniton ${ }^{\text {C }}$		WEBE Char	10000	KOMS EI Dorado, Ark	5000d
KNEM Nevada, Mo.	250	House. Ohio	500d	WCMR Elkha	5000	KUOA Siloam Sprgs., Ark.	5000d
KBMY Billings, Mont.	1000	WLEM Emporium, Pa.	1000d	WWCA Gary.	5000	KHSL Chico. Cal	5000
KLT2 Glasgow. Mont.	1000	WPEL Montrose,	1000d	WORX Madison. Ind.	1000 d	KPER Giroy cal	
KBLL Helena, Mont.	1000	WTAE Pittsburgh. Pa	5000	KSCB Liberal, Kans.	1000	KMEN San Bernardi	
KFOR Linsaln, Nebr. KOOY North Platte.	1000	WNOW York. Pa.	5000 d	WAIN Columbia. Ky.	10000		
KOOY Morth Platte. Nabr.	1000	WTMA Charieston, S.C.	5000	WFUL Fulton. Ky.	1000d	WCCC Hartford. Co	500 d
WFTN Franklin. N.	250	WKBL Covi	1000d	KVCL Winnfeld. La.	1000d	WTUX Wilmington. De	1000d
WSNJ Bridgeton. N. J.	1000	WNTT Tazowell, ${ }^{\text {Wenn. }}$	500	WKYR Cumberland. M	5000	WTMC ocala. Fi	5000
KAVE Carisbad. N.Mex.	1000	KFTV Paris. Tex.	500 d			WSCM Panama City Beach.	
KCLV Clovis, N,M	1000	KPAC Port Arthur. Tex.	5000	KWEB Rochester, Mi	5000		$\begin{aligned} & 500 \mathrm{~d} \\ & 5000 \end{aligned}$
	10000	KUKA San Antonio. Tex.	100	WVOM loka, Misi.	1000 d	WOEC Americus, Ga.	1000d
WITM Jamestown, N.Y.	500 d	KANN Ogden. Utah	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	WLSM Louisvilie. Miss.	5000 d	WCHK Canton, Ga.	1000 d
W Vos Liberty. N. Y.	1000	KVEL Vornal, Utah	5000 d	KUSN St. Joseph, Mo.	1000	C Savannah.	5000
WNB2 Saranac Lake, N.Y	1000	WDVA Danvílle, Va.	5000	WTSN Oover.	1	WIRL Peoria.	5000
W8NY Schenectady. N.Y. 10	10000	WYSR Franklin, Va.	1000 d	WOVL Vineland. A.J.	500d	WREY New Albany, Ind.	5000 5000
WATN Watertown. N. Y.	1000	WEER Warrenton. Va.	000	KINN Alamogordo.	1000 d	KWNS Pratt. Kansas	
WPNF Brevard. N.C.	1000	KWSC Puliman. Wash.	000	WHLD Niagara Falls, N.Y.	5000 d	WCBL Benton, Ky.	5000 d
NCC Elizabeth City, ${ }^{\text {che }}$	1000 1000 d	WEMP Milwaukee. Wis.	5000	W DLA Walton, N.Y.	1000d	KJEF Jennings, Li.	1000 d
WJNC Jackionville. N.C.	$\begin{aligned} & 1000 \mathrm{~d} \\ & 1000 \end{aligned}$		5000	WCGC BeImont. ${ }^{\text {N, }}$. C.	1000	WHGR Houghton Lake.	0
WRNC Raleigh, N.C.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	1260-238.0		M Manden N. ${ }^{\text {a }}$	5000 d	WNIL Niles, Mich.	500 d
KDLR Dovils Lake. N. Dak.		KPIN Casa Grande, Ariz	1000d	ILE Cambridgo. Ohio	$\begin{gathered} 1000 \\ 1000 \mathrm{~d} \end{gathered}$	$\begin{aligned} & \text { WOIB Salins, Mich. } \\ & \text { KBMO Benson, Minn. } \end{aligned}$	$\begin{aligned} & 500 \mathrm{~d} \\ & 500 \mathrm{~d} \end{aligned}$

WBZA Glens Falls. N. Y. lood WBRB Mt. Clemens, Mleh. 500

VMHITES
 L(OG)

kHz Wave Length

WWGO Erie, Pa, WFRA Frankiin, Pa WPAM Pottsville, Pa . WMPT So. Williamsport, Pa, WMAJ State College, Pa. WJPA Washington, P_{a}. WQSN Charloston, S.C. WMYB Groenwood, S.C. WHSC Hartsvilie, S.C. KBFS Belle Fourche. S. Dak WLAR A thens, Ton.
WMOC Chattanooga, Tenn. WDSG Dyersburg. Tenn. WSMG Greeneville, Tenn WGAS Murfreosboro. Tenn. KAYC Beaumont. Tex. KBEN Carrizo Sprgs., Tex KCTI Gonrales. Tex. KCYL Lampasas. Tex. KMHT Marshall, Tex. KAMY MeCamey, Tex. KNET Palestlne. Tex. KSNY Snyder. Tex. KURA Moab. Utah KEYY Provo, Utah
OXU St. George, Utah SA Bratilebor WFTR Front Royal V WENZ Highland Springs WREL Loxington, $V a, ~$
WMVA Marlinsville, KBKW Aberdeen, Wash. KCLX Colfax. Wash.
KONP Port Angeles. Wash. KAYE Puyallup, Wash. KPAR Parkersburg, W. WDLB Marshfiold, wis. WPFP Park Falls, Wis. WRCO Richland Center, wis. KBBS Buffalo. Wyo.

1460-205.4

WFMH Culiman, Ala. WPNX Phenix City. Ala. KCCL Marianna, Ark KTYM Inglewood, Callf. KDON Salinas. Calif. KYSN Santa Rosa, Callf. WBAR Bartow, fla. Colo WZEP Defuniak

Frings, WMBR Jacksonville. Fla. WDYX Buford, Ga. WROY Carml, II.
WIXN Dixan, Ill.
WRTL Rantoul, Ill
WOCH North Vernon. Ind. KSO Des Moines, Iow
KCRB Chanute, Kans WRVK Mt. Vernon, Ky WXOK Baton Rouge, La KBSF Springhill, La. WBET Brockton. Mass WBHN Blg Hapids. Mich. WPON Pontiac, Mich. KOMA Hastings, Minn. WELZ Beizoni. Miss.
WACY Moss Point. Miss. KADY St. Charles, Mo, KRNY Kearney, Nebr. WOKO Albany, N. Y. WVOX New Roehalle, N.Y. WFVG Fuquay Sirgs. N.C WRKB Kannapolls, N.C. WMMH Marshall. N.C. WBNS Columbus, Ohio KROW Dallas, Oreg. KELR EI Reno, Okia. WMBA Ambridge. Pa. WFBA San Sebastian. P

kHz Wave Length W.P.|hHz Wave Length
W2BN 2ion, III.
WBRI Indianapolis, Ind. KWRG Now Rosds. Le. WVOC Battlo Creok. Mieh. WJBK Dotroit. Mieh. K8TP So. Paul, Mrinn.
KOFN Donlphan, Mo. WKER Pompton Lakes, N.J.

KOSG Pawhuska, Okla. WMAT Mens. WEAC Gaffney, S . C . KWFA Merkle, Tox. KTXO Sherman. Tox. KANI Wharton. Tox.

1510-199.1

KALF Mesa, Arlz. KASK Oatario, Cal KIRV Fresno, Cal. KTIM San Rafael, Callp. KDKO Littieton. Colo. WNLC Now Londan. Conn. WWBC Cocoa. Fla. WINU Highland. III WJRC Joliet. 111 WKAI Maeomb. ill. KIFG lowa Falls, Iowa KANS Larned, Kan. KPBC Port 8ulphor, La. WMEX Boston. Mass. W JCO Jacksen. Mich. MIeh WKPO Prentiss, Miss KCCV Independence. Mo KTTT Columbus. Nobr WRAN Dever, N.J, WJIC 8alem, N.J. WBRW Brewstor, N.Y. WEAL Gremsboro, N. WPSL Monroovilio. Penn. WLAC Nashville, Tenn. KCTX Childress. Ten. KABH Midland. Tex. KMOO Mineola. Tex. KROB Robstown. Tox,
KSTV 8tophenvilie. Tor. KSTV 8tophenville. T KGA Spokane. Wash. Is.

100
100
10
10
10
10

1000 d
5000
10000 d
250
1000 d
250 d
250
.$\quad 500$

10000d
1000
500 d
500 d
1000 d
1000
10000a. 1

w

500

000d 000d
500d
1000
R.I.

1520-197.4

KMPG Hollister, Cal. KACY Port Huoneme.
WVGF Apopa. Fla.
WGNP Indian Roeks Beach. fla. WIXX Oakiand Park, Fla. 1000 d WHOW Clinton. III. WLUV Loves Park, III. KSIB Creston, lowa WVOB Bel Air, Md.
WKJR Muskagon His., Mith

WYN2 Ypsilantl, Mieh. 250 d | KOLM | |
| :--- | :--- |
| KMPL | |
| Sikesten. Mos. Minn. | 1000 g |
| 000 | |

WSLT Ocean City-Somers
KHIP Albuquerque N. Mox. WKBW Buffalo. N.Y. 50000 WTHE Minoola, N. Y. $\quad 10000 \mathrm{~d}$ KMAV Mayville, N.D. WBNO Bryan. Ohio WINW Canton, 0. WTTO Kento.
WTTO Toledo, O, Okfa.
KYWN Oregon Cify. Ori.
WCHE West Chester, PP.
WRAI Rio Piedras, P. R.
WTGR Mrtie Beach, 8.C. 250
WIDD Elizabethton. Tenn. Io00d
$1530-196.1$
WAAO Andalusia. Ala
WLCB Moulton. Ala.
WCTR Chestertown. Me.
KCAT Pine Bluft. Ar
KFBK Saeramento, Calit. $\quad 50000$
KRYT Colorado Springs. Colo.
WENG Englowood, Fle. WTTI Daiton, Ga. KWLA Many, La.
WCTR Chestartown. Md.
WTHM Lapeor. Mieh.

500 d
1000 d
1000 d
1000 d
50000
10000
250
250
250
250 d
1000 d KGMO Cape Girardeau. Wo. KICS Hastingep. Mo. WCGR Canadaiqua. N.Y.
WBAZ Kingston. N.Y. WBYM Uties, N.Y. WPXY Groenville. N. C. WYNA Raloigh. N.C.
WTYN Tryon. N.C. WTYN Tryon, N.C. KQWE Fargo. N.D.
WDLR Delaware. Ohio
KMAD Madili. Okla.
KREK Sapulpa. Okia. WLOA Braddoek. Pa. WTTC Towanda. Pa. WKFE Yaute, P.R. WAGL Lennetsville. S.C
1000
1000 d
1000 d
250d WWBC Navasota. Tex.
000d WPTN Cookevillo. Tenn.
5000d WTPI Cookville. Tenn.
W.P.|kHz Wave Length
W.P. kHz Weve Lenet

W
W

000d WKPT KInesport, Tonn.
KCOM Comanche. Tox.
KwIC Salt Lake City, Utah d
50000 WKBA Vinton, V WKYK Virginia Beach. Va.
WXVA Charlestown. W.Ve.
KOQT Bellingham.
250 d
1000 d
1000
$1000 d$
1000
$1000 d$
50000
5000

$$
\begin{array}{l|l}
10 & 1 \\
50 &
\end{array}
$$

0000

50000

这造
 and

KOQT Bellingham. Wesh.
KGAR Vancouver. Wash.
WMIR LakeGeneva. Wis,
WMAD Madison. WIs.
15
WA
KD
$560-192.3$
DDA Dumas, Ark. 8 Monette, Ark. PMC Bakerstiald. Callf.
OS willows. Calif.

1000d
250 d
10000
YSE Inverness, Fle. VYS Canton. III. RIN Rensselaer, Ind.
SWI Couneil Bluffs, lowa $10000 d$
$250 d$ 10000 d
1000 d 000d

0000 d 500d KSW Couneil Bluffs, lowa
KABI Abilene. Kan.
WPHN Liberty, Ky. WDXR Padueah, Ky. WBGS Sidell, La.
W8MD LaPlata, WSMD LaPlata, Md.
WTPS Portage. Mieh. WTPS Portage. Mich.
KBEW Blue Earth. Minn.
KQYX Joplin. Me. KQYX Joplin. Mo. KLTI Macon. Mo.
KTUI Sultivan. Mo. WGXR Now York. N,Y.
WTNS Coshocton. Ohio WTNS Coshacton. Ohio
WCNW Hamilton. O. WCNW Hamilton. 0.
WTOD Toledo, Ohio WTOD Toledo, Ohio
KWCO Chiekasha. Okla
WRSJ Bayamon. P.R. WRSJ Bayamon, P.R.
WAGL Lancaster, S.C. WAGL Lancaster, S.C.
WWGM Nashyllio Tenn.
WBOL Bolivar. Tonn. KBAL Bolivar, T 1000 d

KEGG Daingerfald, Tax.
KEGG Daingorfiald, Te
KHBR Hillsboro. Tox.
KHBR Hilisooro, Tox.
KGUL Port Lavick. Tox. KGHO Hoquiam, Wa
KDFL Sumner. Wash.

500 d	KDF S Sumnor, Wash.
50000 d	
1000	WGLB Port Washington. Wis. 250 l

1000d

10000
1000
500 d
$1570-191.1$
WCRL Oneonta. Ale.
WRW Selma, Ala,
KBRI Brinkley. Ark. KBJT Fordyes. Ark. KR8A Alisal Calif.

5000d	
50000 d	KCYA Alisal, Cali
Kodi, Cal.	

50000 d
50000 KCVR Lodi, Cal.
KACE Riverside. Callf. KLOV Loveland, Calo.
WTWB Auburndale, FIa. 10000 d WLBA Gainesvilla, Gar 5000 l WKID Urbana. Ili.
WCNB Connersvilie, Ind. WJVA South Bend, Ind. 1000 d s000d WAMW Washington. Ind. 250 d $\begin{array}{lll}\text { KCHA Charlas City. dowa } & \text { so0d } \\ \text { KWNS Davenpert. lowa } & 500 \mathrm{~d}\end{array}$ WCRV Washington. N.J. $\quad 500 \mathrm{~d}$
KLOS Albuquerque. N.M. $\quad 1000 \mathrm{~d}$

$$
\left\{\begin{array}{l}
\text { WVKO Columbus, Ohlo } \\
\text { KLTR Blackwall. Gkla }
\end{array}\right.
$$

WOKC Okeechobee, Fla

Fla. 250

\section*{w

w
 Kı

 \section*{

 \section*{

 }}

WFRL Alton. Ill.
WBEE Hreeport, Ill. WTAY Robinson. Ill. WILO Frankfort. Ind.
WHEL Naw Albany, WHEL Now Albany, In
KMCD Fairfield, Iowa KJFJ Webster City, lowa
KNDY Marysubile. Kans. KNOY Maryswilio, Kans.
WKKS Vanceburs. Ky.

5000 d
10000
1000 d
10000 d
1000 d
50000
5000 d
250
2000
5000 d
5000
500 d
500 K KUXL Golden Valley Minn
WONA Winona, Miss.
KLEX Lexington. Mo.
WAFS Amsterdam. N. Y WFLR Dundee, N.Y. WBUZ Fredonia. N.Y. WAPC Riverhead. N. Y. WTLK Tayloriville. N.C. WNCA Siler City. N.C WPTW Piqua. Ohia KTAT Frederiek, Okie KOLS Pryor, Okia. KWAY Forest Grave, Oras. KOHU Hermiston. Ores. KOHU Hermiston. Oren.
WPGM Danville. Penn. WPGM Danville. Penn.
WBUX Doylestown. Pa. WBUX Doylestown. PA
WUTW Larrote, Ha. WUTW Larrote, Pa. WFGN Gafiney. S.C.
WJES Johnston. S.C. WLSC Loris. S.C.
1000d
25nd
250d WHLP Centerville, Tenn.

250 d

1. Va. 1
$1000 d$
1000 d
1000 d
1000 d 000d WKIG Glenville. Ge. 1000 d WKKD Aurora, Ili. WDAN DuQuoin, Ill. WBEA Pittsfieid, III. KDSN Denison, Iowa WAXU Geernatown. Ky.
WMTL Leitehfield. Ky. 10000 dWPKY Princeton. Ky.KLUV Haynesvilio, La.
$250 d$
250 d
250 d KLOU Lake Charles, La. 1000
WPGC Bradbury Hpts., Md. 10000 $\begin{array}{ll}\text { WJUO St, Johns, Hich. } 1000 \mathrm{~d} \\ \text { KDOM WIndom, MInn. } & 250 \mathrm{~d} \\ \text { WD. }\end{array}$ $\begin{array}{lr}\text { WAMY Amery, Miss. } & 5000 \mathrm{~d} \\ \text { WESY Leland. Miss. } & 1000\end{array}$ W

Point, Missicsippl 1000 d KCGM Columbla, Mo.
KESM Eldorado Sprinis, Mo. $250 d$
KNIM Maryvillo. Mo. 250 d 10
50
2
2
2
50
10
50
50
 WPAC Patohanue, N.Y. $\quad 10000 \mathrm{~d}$
WZKY Albemarle. N.C. 250 d WPYB Berton, N.C.$\begin{array}{r}1000 \\ \\ \hline\end{array}$WEND Ebensbure. PeWORG Orangeburg. 8.C. 1000 d
WBBR Trevelers Rest. S.C. 500 dW8KT Colonlal Village. Tenn. 250 dWSKT South Rnoxvilie. Tenn. 250$\begin{array}{ll}\text { KKAL Denver City, Tox. } & 250 \mathrm{~d} \\ \text { KGAF Gainesville, Tex. } & 250 \mathrm{~d}\end{array}$$\begin{array}{ll}\text { KIRT Misgion. Tex. } & \text { 250d } \\ \text { KIROO }\end{array}$$\begin{array}{ll}\text { KTLU Rusk. Tex. } & \text { 500d }\end{array}$KWED Seguin. Tex. \quad 1000d$\begin{array}{lll}\text { KBYP Shamrock, Tot. } & 250 d \\ \text { KBGO Wace, Tax. } & 1000 \\ \text { WISA Oanvile Yer }\end{array}$$\begin{array}{ll}\text { WILA Danvilis, Ve. } & 1000 \mathrm{~d} \\ \text { WPUV Pulaski. Va, } & 5000 \mathrm{~d}\end{array}$WTTN Watertown, wis.
$1590-188$.

1000 d

$1590-188.7$

| WATM Atmare. Ala. | 5000 d |
| :--- | :--- | :--- |
| WBIB Centerville. Ala. | 1000 d |
| WYNA Tuseumbia, Ala. | 5000 |
| KPBA Pine Bluff. Ark. | 1000 d |

KPBA Pine Bliff. Ark. lood	
KSPR Springdale. Ark.	
KLIV San Jose. Caf.	$5000 d$

1000 d	KUDU Ventura, Cal. Cal.	5000 d
1000 d	10000	
KCIN Vietorvilie. Calle.	500 d	

WCLE Cloveland. Tenn. 1000 d $\begin{array}{lll}\text { KCIN Vietorville, Callf. } & 500 \mathrm{~d} \\ \text { WBRY Waterbury, Conn. } 5000\end{array}$ 250d WOWY Clewiston, Fla.
1000 d
1000 d WiLZ St. Petershurg Beach. 100

$$
\begin{aligned}
& \text { WELE S. Daytona Ben.i. } \\
& \text { WALG Albany, Ga. }
\end{aligned}
$$

1000 d

WALG Albany, Ga.	$\quad 1000$
WLFA Lafayette. Ga.	5000 d
WTGA Thamaston, Gm.	500 d

250d		
250d		
1000 d	WNGA Thamaston. GA.	S00d
WAIK Ganston. II.	1000 d	

WPCO Mt. Vernon. Ind. $\quad 5000$
KWBG Boone lowa 5000 d KWBG Boone. lowa Kans, $\begin{array}{lll}250 \mathrm{~d} & \text { KLBN Lebanon. Ky. } & 1000 \\ 250 \mathrm{~d} & \text { WETT White Castle. La. Ocean City. Md. } & 1000 \\ & 1000\end{array}$ 1000 d
1000 d 00 d
000
000 250.

Canadian AM Stations by Frequency

Canadian statlons Ilsted alphabotically by call letters within aroups, Abbreviations: kHz, frequency in kilocyeles; w.P.. power in watts;

kHz Wave Length	W.P.	kHz Wave Length	W.P.	kHz Wove Length	W.P.	Hz Wave Length	$\boldsymbol{W} . \boldsymbol{P}^{\text {P }}$
1000-299.8		1230-243.8		CHGB Sto-Anne-de-I		1440-208.2	
CKBW Bridgewater, N.S.	10.000	CBDR Sehefferville. Que.	$\begin{array}{r} 250 \\ 1.000 \mathrm{~d} \end{array}$	CKOY Ot	50,000	CFCP Courtenay. B.C. CKPM Ottawa, Ont.	$\begin{array}{r} 1.000 \\ 10.000 \end{array}$
1010-296.9		CFBV Smithers, B.C.	$\begin{array}{r} 1.000 \mathrm{~d} \\ 250 \mathrm{n} \end{array}$	1320-227.1		CKPM Ottawa, Ont.	10.000
CBR Calgary, Alta.	50.000	CFGR Gravelbourg. Sask.	250 n 250		10,000	450-206.8	
CFRB Toronto, Ont.	50.000	CFKL Schefterville, Que, CFPA Port Arthur, Ont.	$\begin{aligned} & 250 \\ & 1.000 \mathrm{~d} \end{aligned}$	CJso Sorel. Que.	10.000 d	CBG Gander. Nfd.	250
1050-285.5			250 n 250		$5.000 n$ 5.000	CFAB Windsor, N.S.	250 1.000 d
ande Prair	10,000	CHFC Churehill	1.000d	CKKw Kitehener, Ont.	5000 1.000		1.000 250 n
HUM Toronto, Ont.	50.000		250 n			CHEF Granby, Que.	1.000 d
IIC Sault Ste. Mario, Ont.		CKMP Midiand, Ontario CKTK Kitimat B.C	250 1.000 d			C	230 n 1.000
	$10,000 \mathrm{~d}$ $2,500 \mathrm{n}$		$\begin{array}{r}1.000 \mathrm{~d} \\ 250 \\ \hline\end{array}$	CFGB Goose Bay. Nfl CFSL Weyburn. Sask.	$\begin{aligned} & 1,000 \\ & 1.000 \mathrm{~d} \end{aligned}$	CJBM Causapical, Que.	1.000 d
JNB N		CKVD Val d'Or, Que.	1.000 d		250 n		$250 n$
KSB St. Bonlface, Man.	10,000 10.000	VOAR St. John's, Nfld.	250 100	CFYK Yallowknife, N. W. CHAD Amos, Que.	1.000 250	1460-205.4	
		1240-241.8		CHRO Drummondville, Qu	250	CJOY Gueldh. Ont.	10.000 d
				CJLS Yarmouth, N.S.	250 250	CKRB Ville St. Georges, Que	3,000n
CFCN Calgary, Alta. 5		CFLM	1.000 d 250 n	CKAR.1 Parry Sound, On	250		10.000d
CJLR Quebee. Que.	10.000	CFVR Abbotsford, B. C.	1.000 d	CKCR Revelstake. B. C.	250		5,000n
1070-28					1.000d	1470-204.0	
1070-280.2		CJAV Port Alberni.	1.000 d	1350-222.1		CFOX Pointe Claire, Que.	10.000 d
AX Vietoria, B.C	1,000	CJCS Stratfor	250 n 500 d	CHOV Pembroke. Ont.		Ow	5.000 n 1.000 d
CHOK Sarnia, Ont.	5.000 d		250 n	CJDC Dawson Creek. B, C.	1.000	Ow	$1.000 d$ 500 n
	1.000n	CJRW Summerside, P.E.I.	250	CJLM Joliette, Que.	1.000	CJQM WInnipeg. Man.	5.000
1080-277.6		C	1.000 d	CKEN Kentrll	1.000 0.000 d		
CKSA Lloydminster. Alta.	10.000	c.	. 250		5,000n		
		C		1360-220.4		mpson, N.W.T CFRC Kingston, Ont.	$\text { . } \quad \begin{array}{r} 25 \\ 100 \end{array}$
CHEC Lethbrides. Alta				CKBC Bathurst, N.B.	10,000	CHYM Kitehener, Ont.	10.000d
CHEC Lethbridgo. Alta. CHRS St. Joan, Que.	$\begin{array}{r} 5,000 \\ 10,000 \mathrm{~d} \end{array}$	1250-239.9		CKBC Bathurt, N.B.	10,000	AD MIddieton, N.	5.000 n 1.000 d
		CBOF Ottawa, Ont. CHWO Oakville. Ont.	$\begin{aligned} & 10,000 \\ & 1,0000 \end{aligned}$			CKBM Montmaony ${ }^{\text {ate }}$	250 n
CBD Salnt John. N.B.		CHSM Steinbach. Man.	10.000	cfiv valoyneld	1.000	M	1.000 250 n
CBD Salnt John. N.B. CFML Cornwall, Ont.	10,000 1,000	CKBL Matane, Que. 1	10.000 d 5.000 n	1380-217.3		CFWB Camplell River, B.C	C. 250
CFTJ Galt. Ont.	250d	CKOM Saskatoon. Sask.	10.000	CFDA Vietoriavilio, Que.	1.000 10.000 d	1	
CHQT Edmonton, Alta.	10.000	1260-		CKLC Kingston.	10.000 d 5.000 n $\mathbf{1 0 . 0 0 0}$	CKAY Duean. B.C.	
1130-265.3		CFRN Edmenton, Alta.	50,000	CKPC Brantford, Ont.	10.000	GKAY Duean. B.C.	1.000
CkwX Vancouver, B.C.	50,000	1270-263.1		1		1-199.	
1140-263.0		CFGT Alma. Que.	1.000	CKLN Nelson, B.C.	1.000	CKOT Tilisonburs, On	1,000
CBt Sydney, N.S.	10.000	CHAT Medicine Hat, Alta.	10,000 10,000	1400-214.2		1540-195.0	
KL Calgary, Alta.	10.000	CJCB Sydney. W.S.	10.000			CHIN Toranto, Ont.	50,000
1150-260.7		1280-234.2		CJFP Rivièredu Loud. Que.	0.000 d		
CHSJ Saint John, N.B.	$10.000 \mathrm{~d}$	CHIQ Hamilton. Ont. I			250 250		
	$\begin{array}{r} 5.000 \mathrm{n} \\ 5.000 \end{array}$	CHIQ Hamiton. Ont.	$5.000 \mathrm{n}$	CKRN Rouyn, Que.	$\begin{array}{r} 250 \\ 250 \end{array}$	Windsor. Ont.	10.000
CKTR Trois-Rivieres.	10.000 d	CJMS Montroal, Que.	50.000	CKSW Swift Current. Sask.	1.000d	1560-192.3	
CKX Brandon, Man.	1.000 n	CKCV Quebee, Que.	10.000 d			CFRS SImeot. Ont.	250d
	1,000n		5.000	1410-212.6			
1170-256.3		1290-2		CFMB Montreal, Que. CFUN Vancouver, B.C.	$\begin{array}{r} 10,000 \\ 10,000 \end{array}$		
CFNS Saskatoon, Sask.	1.000	CFAM Altona, Man. 1	10.000 d	CKSL London. Ont.	10.000	,a, Ont	$10,000 \mathrm{~d}$ 1.000 n
1220-245.8			,	1420-211.1		CHUB Nanaime, B.C. CKLM montrial, Que.	$\begin{aligned} & 10.000 \\ & 10.000 \end{aligned}$
cjoc Lethbridge. Alta	10.000	1300-230.6		CJMT Chicoutiml. Que.	1.000		
	5,000n	CBAF Mancton. N.B.	5.000	CKPT Peterborough, Ont.	1.000 d	1580-189.2	
RL K	1.000 1.000	CJME Rogina. Sask.	1.000		$500 n$	CB」 Chisoutimi, Que.	10.000
CKDA Vietoria.	10.000	1310-228.9		1430-209.7			
CKCW Moncton,	10.000	CFGM Rishmand Hill, Ont. 1	10.000 d	CKFH Toronto, Ont. I			

U. S. Commercial Television Stations by States

U. 8. stations listed alphabetically by cities within state groups. Territories and possessions follow states.

MHMTE'	Location C.L. Chan.	Location C.L. Chan.	Location C.L. Chan
D 1 D 0	$\begin{aligned} & \text { BKB-TV } \\ & \text { clu-TV } \\ & \hline \end{aligned}$	MARYLAND	Kearney-Holdrege KHOL.TV 13
	WFFL 32	Baltimore WBAL-TV 11	MeCook KOMOM North Platt KNOP.TV 2
0	Danville WMAR-TV ${ }^{5}$	$\begin{aligned} & \text { WMAR TV } \\ & \text { NMET.TV } \\ & 24 \end{aligned}$	
	Decatur	Salisbury wBoc-tV 16	KMTV ${ }^{\text {K }}$
	Harrisbure ${ }^{\text {WSIL.TV }} 3$	MASSACHUSETTS	Kuperior GTL.TV 4
Lecotios C.L. Chan.	Lasalle WEED.TV ${ }^{\text {L3 }}$	Adams wCDC 19	EVADA
	19	WIHS.TV 38	Las Vesas klas.tV
ranco KREA-TV	WEEK-TV 25	WHDH-TV 5	Reno KORK.TV
Grand Junetlon KREX.TV ${ }^{\text {K }}$	Quiney-Hannibal, Mo. WGEM-TV 10		Reno KOLO-TV
Puoble storing KOAA.TV KTVS	Roeklord WREXTVO ${ }^{\text {W9, }}$		NEW HAMPSHIRE
CONNECTICUT	Roek 1zland \quad WHBF:TV 44 Springfeld	worcester WHYN.TV WIZB.TV 14	Lebanon WRLH 49
Hartterd WWHCT ${ }^{18}$	ANA	ICHIGAN	NEW JERSEY
WUHF.TV 61	napolis ${ }_{\text {wTy }}$		Burlington WKBS 41
Britain - Hartord ${ }_{\text {W }}$		Cheboygan Wrat wom-T	Linden-Nawark WNJU-TV ${ }_{\text {Wat }}{ }^{\text {Li }}$
	4	Detroit wjBk.TV	Plidwood WCMC.TV ${ }^{\text {Pa }}$
	Fort wayne WANE-TV 15		NEW MEXICO
	KWPTA ${ }^{\text {WIA }}$		Albuquerque KGGM.TV 13
DELAWAR	Indianapolis WFBM-TV ${ }^{\text {W }}$	Detroit-WIndsor CKLW.TV 98 Filint	7
No stations	WLWI 18	Grand Rapids WZZW-TV 13	Carlsbad KAV
DISTRICT OF COLUMBIA	Lapayotte WFAM-TV Marion WTAF.T 31	$\begin{aligned} & \text { mazoo } \\ & \text { WOOD-TV } \end{aligned}$	Roswell KSWS.TV ${ }^{\text {g }}$
Washlnatoa \quad WOOK.TV 14	Muncie South Bend WLBC.TV 19 160	Kalamazoo WKZZ.TV 3 Wansing WIM-TV	NEW YORK
w wht. ${ }^{\text {W }}$		Lansing.Onondaga WILX-TV ${ }^{\text {W }}$	
WRC-TV	8outh Bend-Elkhart WTWIIV Terre Haute WTHI-TV 10	Sapinaw-Bay city WKNX-TV 57	
WTTG	2		Binshamton WBJA.TV ${ }^{\text {S4 }}$
IDA	IOWA	7	NBEF-TV ${ }^{\text {N }}$
Clearwator WHJR.TV 22 Daytona Beash-Oriando		andria KCMT 7	WGR.TV 2
WESE	Cedar Rapids.Wateriou	Austin Duluth KMMT Kio.TV ${ }^{6}$	Carthag
Ft. Plores. Varo Boath W W			Elmira-Corning WSYE.TV I8
Jaeksenville WFGA-TV 12	Des Moines KRNT.TV ${ }^{8}$	WDSM.TV 6	Whata \quad WABC.TV ${ }^{52}$
wiks.tV if WJXT	Fort Dodie Mason City KGLOTV 21	Mankat Minneapolis.st. Paul KEYC-TV 12	WCBS.TV ${ }^{\text {W }}$
Mlaml WCCKT 7	Sioux City KTIV ${ }^{\text {¢ }}$	$\begin{array}{lll} \text { wCCO-TV } \\ \text { KMSP.IV } & \end{array}$	WNEW.TV
	pids ${ }_{\text {ckw }}$, TV,		
Orlande WDBO-TV	WL.TV 7	St. Paul-Minneapolis	Plattsburgh WHEC.TV 10
Ponzseoia-mobito. Ala.	Garden City KUPK.TV is		
38	Goodland Groat Bend		NYS.
Tallahasse日-Thomasvil	Hays ${ }^{\text {Heden }}$ KAYS.TV ${ }^{7}$	Columbus WCOX-TV ${ }^{\text {Cram }}$	Utiea wKTV
Tampa	Pittsburg-Joplln,		NORTH CAROLINA
		Laural-Hattiesburg wDAM-TV ${ }^{\text {a }}$	Asheville WIS
West Palm Boach WEAT.TV ${ }^{\text {W }}$		Muridian WTOK-TV Tupion 1	Charlotte
RGIA	cwis-tv 24.	MISSOURI	
	KY		Greensbora WFMY.TV
Atlanta WAll:TV 11	Bowling Green wriv 13		
WAGA.TV ${ }^{5}$	Lexinston WKYT-TV 27	Hannlbal-Quiney, IIf. KHQA.TV	Pt. - Greensboro. WInston Salom W
Augusta W88-TV ${ }_{\text {W }}$	Louisville	Joffirson City KRRCG 13	Hiekory WHKY-TV ${ }^{14}$
Augusta WRDWJPF ${ }^{\text {W }}$ W ${ }^{6}$	WAVE-TV ${ }^{\text {W }}$	KODEETV 12	New Bern ${ }^{\text {Waleigh.Durham WRAL.TV }}$
Columbus WRBL.TV 3	WLKY-TV 32	Kansas City KCMO.TV	Washington WITN.TV ?
mason WMATVM ${ }^{\text {a }}$	Newport WNOP.TV 74 Owensboro WYS.TV 19	WDAF-TV	Wilmington WWAY ${ }^{\text {W }}$
$\begin{array}{ll}\text { Savannah WSAV.TV } \\ & 3 \\ \text { WTOC:TV }\end{array}$	Padueah WPSD.TV 6	Kirksville.Ottumwa, La.	Winston-Salem WSIS-TV 12
	LOUISIANA		NORTH DAKOTA
	Alexandria KALB-TV	8i. Louls Kmox-TV 4	Bismarck KFYR-TV ${ }^{5}$
UAF-TV ${ }^{\text {P }}$		KPLR-TV ${ }^{\text {K }}$	Devils Lake WDAZ.TV ${ }^{8}$
	Lafayotte KLFM.TV ${ }^{\text {K }}$	KPMOSTVV 2	Dickinson KDiXIV ${ }^{2}$
KNO KH	7	Springiteld KTTS.TV ${ }^{\text {Sob }}$	Minot WDAY-TV ${ }^{\text {KMOT }}$ (10
KTRG-TV 13	Menroe KNOE.TV ${ }^{\text {29 }}$	KYTV 3	XMC-TV is
Wailuku KMAli-TV ${ }^{\text {K }}$	Now Orleans wosu-TV ${ }^{6}$	TANA	CND-TV ${ }^{12}$
KMVI-TV 12	WWOM-TV 26	Blllings KULR	williston KUMV-TV
	Shrevedort KSLA-TV 12	Butte KXLF.TV	HIO
	KTAL-TV 6	Giendive KXGN-TV	
Boise ${ }^{\text {a }}$, KBOO	Shroveport KTBS.TV Wost Monroe ${ }^{3}$ KUZN-TV	Great Falls KFBB-TV ${ }^{\text {K }}$	Ashtabula WICA.TV ${ }^{\text {as }}$
Idahe Falls Kid.TV		Helena	Cinainatl wCPO-TV
Lowiston KLEW-T	AINE	missoula KGVO-TV I3	RRC.TV 12
Twinfals	Banbor WABI-TV ${ }^{5}$	EBRASKA	Cievoland WLW.T ${ }^{5}$
ILLINOIS			WAFT.TV 61
是	Portland WC8H.TV 6		WSW-TV ${ }^{8}$
Chlease WBBM-TV	Wesque lito WAGM-TV 8 ,	Hayos Conter KHPL.TV 6	Columbur WLWC 4

Location

Dayton	WTVN.TV 6 WHIO.TV 7 WKEF 22
Lima	
Portsmouth	WRLO 30
Springfield	WSWD-TV 66
Steubenville	ngistv.ty
Toledo	WSPD.TV 13
	WDHD 24
	WTDL-TV 11
Youngstown	WFmJ.TV 21
	WKBN-TV 27
	wYTV 33
Zanesville	WHIZ.TV 18

OREGON

Coos Bay	KCBY-TV
Eugene	KEZITTV
Klamath Falls	KVAL-TV
LaGrande	KOTI
Medford	KTVR
Portland	KMEDVM
	KATV
	KGW.TV
	KDIN.TV
Roseburg	KPTV
	KPIC

Location	C.L. Chan.	Location C	C.L. Chan.
York	WBRE.TV 28 WSBA.TV 43		$\begin{array}{cc} \text { KELP.TV } & 13 \\ \text { XEPM.TV } & 2 \end{array}$
RHODE IS	LAND	Ft. Worth	KTVT 11
Providenee	WJAR-TV 10	Ft. Worth-Dallas	$\begin{array}{ll} \text { WBAP.TV } & 5 \\ \text { KGRT.TY } \end{array}$
Providene (New Bed	WPRD-TV 12 ford.	Harlingen Houston	KHDU.TV 11
Mass.)	WTEV 6		KHTV 39 KTRK.TV 13
SOUTH CA	OLINA		KTMAB 20
Anderson	WAIM-TV 40	Laredo	KPGC-TV ${ }^{\text {KGNS }}$ K ${ }^{\text {K }}$
Charleston	WCIV 4	Lubbock	KCBD-TV 11
			KKBC-TV 34
	WIS.TV 10	Lufkin	KLBK-TV KTRE-TV
	WNDK-TV 19	Midland Ddessa	KMID.IV 2
Florenes	WDLO.TV 25	Monahans K	KVKM-TV 9
	WPDT 15	Odessa	KOSA-TV 7
Greenville	WFBC-TV 4		KPAC-TV 4
Spartanburs	WSPA.TV 7	Rosenberg	KJDO-TV 58
SOUTH DA	ККТА	San	3
-	KXAB-TV	San Antonio	NS-TV 5
Deadwood. Lead	KDSJ-TV 5		OAI-TV 4
Florence-W atertown	KDLO.TV		KWEX.TV 41
Mitehall	KORN-TV 5	Sweetwat	KPAR-TV 12
Rapid City	KRSD-TV 7	Tomple-Waco	KCEN-TV 6
Reliance	KPLO-TV 6	Tyler-Longview	KLTV ${ }^{7}$
Sioux Falls	$\text { KELO-TV } 11$ $\text { K } 500 \cdot \mathrm{TV}-13$	Wac	KWTX.TV 10 WACO-TV 25
TE		Weslaco	$\begin{array}{ll} \text { KRGV.TV } \\ \text { KFDX.TV } & 3 \end{array}$
			KAUZ.TV 6
Chattanooga	$\begin{array}{lll} \text { WDEF.TV } & 12 \\ \text { WRCR.TV } \end{array}$	UTAH	
Jackson	WDXI-TV 7		
Johnson City-Bristol Kingsport	WJHL.TV II	Salt Lake Gity	
Knoxville	WATE.TV 6		KSL.TV 5
	W BIR-TV 10	VERMON	NT
Memphis	WMCT 5	Burlington	WCAX.TV
	WHBQ.TV 13 WMTU.TV 30	Burlington	
	WREC-TV 3	YIRGINI	114
Nashville			
	WSIX.TV	Bristol Charlottosville	$\begin{aligned} & \text { WCYB-TV }{ }^{5} \\ & \text { WINA-TV } 29 \end{aligned}$
TEXA		Hampton. Norfolk	WVEC.TV 13
		Lynehburg-Roanoke	WLVA.TV 13
Abilene	KRBC-TV ${ }^{\text {K }}$	Nortolk	WTAR-TV 3
Amarillo	$\begin{array}{lll} \text { KFDA-TV } & 10 \\ \text { KGNC.TV } & 4 \end{array}$		WNTU.TV 33
	KHFI.TV 42	Newport News	WAVY-TV 10
	$\text { KTBC:TV } 7$	Richmond	
Beaumont	KBMT 12		
	KFDM-TV 6		WXEX-TV 8
Bryan	KBTX-TV 3	Roanoke	WRFTSTV 27
Corpus Christ	$\begin{array}{crl} \text { Kili } & 3 \\ \text { KRIS.IV } & \end{array}$		WSLS.TV 10
Dallas-Ft. Worth	WFAASTV ${ }^{10}$	WASHINE	GTON
	KRLD.TV		
El Paso	KROD-TV 4	Bellingham	KVOS.TV 12
El Paso-Juarez. Mex.	KTSM-TV XEJ-TV 9	Paseo-Kannewiek-Ric	chland KEPR.TV 19

Bluefield Charleston Clarksburg	$\begin{aligned} & \text { WHIS-TV } \\ & \text { WCHS.TV }{ }^{8} \\ & \text { WBDY.TV } 12 \end{aligned}$
Huntington-Charles	WHTN-TV 13
Oak Hill	WOAY.TV
Parkersbur	W, OiAP.TV 15
Wheeling-Steubenvi	lie, 0. WTRF-TV
WISCON	SIN

WYOMING

Casper	KTWO-TV 2
Cheyenne	KFBC-TV 5
Riverton	KWWR-TV 27
	KWR.TV 10

Agana KUAM.TV 8

PUERTO RICO

A guadilla. Mayaguez WOLE.TV 12 Mayaquez WORA.TV 5
WITB.TV 22
Ponce WSUR.TV ${ }^{16}$

San Juan WAPA.TV 14
WMTA.TV 90
WRST 18

VIRGIN ISLANDS

Charlotte Amalia WBNB.TV 10 Christiansted. St. Croix WSVI 8

U. S. Educational Television Stations by States

Inefudes Non-Commercial Stations. U. S. Stations listed alphabetieally by eities in state groups. Territories and possessions follow states.

$[B / a] D](0)$		Locotion C.L. Chon. PENNSYLYANIA Allentown-Bothtehem	$\left.\right\|^{\text {Locotion }} \text { C.L. }$
(0) 5			
ortion			VIRGINIA
MISSOURI	NORTH DAKOTA	SOUTH CAROLI	
	Orao OHIO		WASHINGTON
NEBRASKA		SOUth dakota	
		Vermillion kes kus	(speane
	Wmub		VE.TV 4
NEW HAMPSHIRE			wisconsin
NEW MExICO			
$\text { dueraue } \begin{aligned} & \text { KNME-TV } \\ & \hline \text { NEW YORK } \end{aligned}$	Tulsa oregon		puerto rico
York	Hils ${ }_{\text {ko }}$		ITPR.TV

Canadian Television Stations by Cities

Canadian stations listed alphabetically by eities. Abbreviations: Chan.. ehannel; C.L., eall letters

World-Wide Shorłwave Stations

With this copy of White's Radio Log at your operating desk you will be able to quickly identify and spot over 300 international broadcasting stations-the majority of the currently active stations being monitored by our readers and by the RadioTV Experimenter monitoring station, DX Central.

Each issue brings you a completely revised and updated version of the shortwave section which reflects new frequencies and schedule changes by the broadcasters. Our list may lack only one thing, that is your own personal listening experiences.

Yes, we find that the best way to compile a listing of active shortwave stations is to rely upon the latest reception loggings of our readers and, although we know that thousands of our readers make use of White's, only a handful of readers take the trouble to send us a copy of their loggings. Naturally we don't expect to hear from each and every reader for each and every issue, but we would like to hear from you at least once in a while. Why not let us know when you stumble upon particularly difficult station to log, or when you come upon a re-
vised broadcast schedule, you might even tell us if a regularly heard station has left the air.

In your report to us please indicate the name and/or call of the station, the location, the approximate frequency, and the time (in GMT) monitored. Send as many as you like. We will use as many as we can.

Victorio Rodriguez G., Mexicali. B. C., Mex.
Floyd Damron, Anchorage, Alaska
John J. Deno, Coatesville, Pa.
David Anderson, Grace, Idaho
Sp/4 Richard Prudy, Union Lake, Mich.
Allan Levite, Chicago, III.
Jeff Miller, Beckley, W. Va.
Mike Fine, Poughkeepsie, N. Y.
Roger E. Melvin, Pocasset, Mass.
David Schoeller, Elmhurst, III.
Robert N. Platt, Elk Grove Village, III.
B. T. Nawrocki, Maywood, Calif.

Elwin F. Young, Dorchester, Mass.
Tom Kneitel, New York, N. Y.
Jack Cooper, Hutchinson, Kans.
Rick Slattery, Key West. Fla.
B. Glassberg, Brooklyn, N. Y.
B. E. Kinahan, Yonkers, N. Y.

Carl Durnavich, Riverdale, Ill.
Walter O'Brien, Jr., Clark, N. J.
Michael A. Oswald, Grand Island, N. Y. Norman D. Meer, Richmond, Va.
Julian Sienkiewicz, Brooklyn, N. Y.

KHz_{2}	Call	Name	Location	GMT
2410	4 VU	R. Lumiere	Port ay Prince, Haiti 2455	-
R. Zambia	Lusaka, Zambia	0340		

31 Meter Band- 9500 to $9775 \mathrm{Kc} / \mathrm{s}$

	BEDS9	V. of Free Chind	Formosa ia Liberia	$\begin{aligned} & 1245 \\ & 0615 \end{aligned}$
$\begin{aligned} & 3225 \\ & 320 \end{aligned}$	ELWA	R. Village Fiii $B C$	Monrovia, Liberia	$\begin{aligned} & 0615 \\ & 0945 \end{aligned}$
3240		${ }_{B C} \mathrm{Se}$	Baghidad, Iraq	1930
3245	YV	R. Lraq		
3275	ZYR3I	Bauru R. Club	Bauru, Bra	0530
3284	VRH9	Fiji BC	Suva, Fiii Is.	0930
3300	-	Brit. Hond. BC	Belize, Brit.	
	YVKX	V. de la Patria	Caracas, Venez.	024
		R. Martinique	Ft. de France. Martinique	0100
3316	-	Sierra Leone BC	Freetown, Sierra	
			Leone	0610
	YLGCD		Wewak, Paupa	1000
46		R. Zamb	Lusaka, Zambia	2000
3350		Ghana BC	Acera, Ghana	0605
33	YVMI	V. de la fe		
			Venezuela	0245
3385	HIDA	R. Hit Musical	Santo Doming	
3395	HIAZ	R. Santiago	Santo	
			Dom. Rep.	110

kHz_{2}	Call	Name	Location	GMT
3905	-	R. Port Vila	Port Vila, New Hebrides	0615
3910		Far East Network	Tokyo. Japan	40
3935	90892	R. Cordac	Buiumbura, Burundi	0400
3995	-	R. Bude pest	Budapest. Hunga	2200
4544		R. Alma Ata	Alma Ats, USSR	0410
4640		R. Dushanbe	Dushanbe, USSR	0000
4720	Cr4AB	R. Club Mindelo	Cape Verde Is.	220

WHOTEE
 $\square 0$

kH/z Call	Name
$6190-$	R.TV Morocso
$6195-$	BBC
$6200=$	R. Moscow
$6234-$	R. Budapest
6345 -	R. Peking
$6850-$	Rozglosnio

Location
GMT
Sebaa-Aioun, Morocco 2130 London, England 1830 Moscow, USSR 0200 Budapest, Hungary 2200 Peking, China 1500 Warsaw, Poland 1130

kHz_{2}	Call	Name	Location	GMT
4926	EAJ206	R. Equatorial	Bata, Spanish Guinea	2130
4940	-	R. Abidjan	Abidjan, Ivory Coast	00
4950	PRF7	R. du Senegal R. Cultura de	Dakar, Senegal Campos, Brazil	0630 1030
		Campos		
4965	Y	R. Zambia	Lusaka. Zambia	1830
4970	YVLK	R. Rumbos	Caracas, Venezuela	2800
4985 5010	ZYY2	R. Brazil Central		0900 215
5010 5041		R. Garoua E. da Guine	Garoua Cameroo Bissay Port.	15
			Guinea	2230
5047	-	R. du Tog	Lome, Too	2200
5050	-	R. Tanzania	Dar es Salam	
	HCPS5	Ondas Canaris	Azogues, Ecuador	0250
5260		R. Alma Ata	Alma Ata. USSR	10
5875	HRN	V. de Honduras	Tegucigalpa,	
5930	-	R. Praque	Prague, Czech.	0100

49 Meter Band-5950 to $6200 \mathrm{Kc} / \mathrm{s}$				
5950	-	R. Warsaw	Warsaw, Poland	1530
		R. Zelayo	Bluefields, Nicaraqua	1100
5955	-	R. Casino	Puerto Limon,	
5960	-	Trans World R.	Bonaire, Nath	
			Antilles	0400
$\begin{aligned} & 5970 \\ & 5980 \end{aligned}$	二	R. Al	Almo Ata, USSR	0410
	-		Godthab. Greenland	0300
		R. Demerara	Georgetown, Guyana	0950
	-	R. Sweden	Stockholm. Sweden	0230
	VUD	All India R.	New Delhi, India Pereira Colombia	1845 1015
$\begin{aligned} & 6020 \\ & 6025 \\ & 6030 \end{aligned}$	HJFK PCJ	V . Amiga R. Nederland	Pereira, Colombia Hilversum, Neth.	1015 1930
	$\begin{aligned} & \text { PCJ } \\ & \text { CSAS } \end{aligned}$	R. Nederland	Miversum, Neth.	1930 0345
	CFVP	V. of Praries	Calgary, Alta., Canada	1200
	-	BC Service Rep.	Baghdad, Iraq	1930
$\begin{aligned} & 6040 \\ & 6055 \\ & 6060 \\ & \end{aligned}$	HJCB	V. del Tolim	Ibague, Colombia	0215
	-	R. Prague	Prague, Czech.	0700
	-	R. Habana	Havana, Cuba	2200
	HIDB	R. Liberdad	Santiago, Dom.	
6082	$\mathrm{OAX}_{4} \mathrm{Z}$	R. Nacional	Lima, Peru	0200
	PCJ	R. Nederland	Hilversum, Netherlands	1500
6090		R. Kaduna	Kaduna, Nigeria	0520
	LRYI	R. Belgrano	Buenos Aires,	0600
6095	-	BC Service Rep.	Baghdad, Iraq	\%
6100	-	R. Haban	Havana, Cuba	0100
		R. Malaysia	Kuala Lumpur, Malaysio	1130
61106120		Ghana BC	Accra, Ghana	0330
	O1X7	Finnish BC	Helsinki. Finland	2100
		BBC Relay	Nicosia, Cyprus	0257
		R. Warsaw	Warsaw, Poland	1530 0330
		R. Habana	Havana, Cuba	0330
6145	ETLF	R. V. Gospel	Addis Aboba, Ethiopia	
$\begin{aligned} & 6155 \\ & 6160 \end{aligned}$	OEI21	Austrian R.	Vienna, Austria	1700
	HSK4	R. Thailand	Bangkok, Thailand	0415
	HJKJ	R. Nueva Grenada	Nueva Grenada,	
	-	R. Habana	Hovana, Cuba	0700
		R. Malaysia	Kuala Lumpur,	
	-		Lendon, England	2115
	-	V. America Relay	Monrovia, Liberia	0600
		R. Alma Ato	Alma Ata, USSR	O410

41 Meter Band-7100 to $7300 \mathrm{Kc} / \mathrm{s}$

$\begin{aligned} & 7100 \\ & 7110 \end{aligned}$	二	R. Budapest R. Erevan	Budapest, Hungary Erevan, Ármenía. USSR	0800
7115	-	R. Prague	Prague, Czech.	0100
7125		R. Warsaw	Warsaw, Poland	1530
7140	-	BBC Relay	Nicosia, Cyprus	0257
7145		R. Warsaw	Warsaw, Poland	1530
7175		V. America Relay	Monrovia, Liberia	0600
7130		BC Service Rep. Iraq	Baghdad, Iraq	20
7135	HSK7	R. Thailand	Bangkok, Thailand	15
7210		BBC	London, England	
7215	vUD	All India R.	New Delhi, lndia	2215
		V. of Vietnam	Hanoi, N. Vietnam	1300
7220	-	R. Budapest	Budapest, Hungary	0
7230		R. Onagadougou	Ouagadougou, Upper Volta	0
7245	OE133	Austrian R.	Vienna, Austria	1700
7260			London, England	2100
	BEC71	Air Force	Taiwan, Formosa	1100
65		R. Tirana	Tirana, Albsnia	2200
7270		R. South Africa	Paradys, S. Alrica	2100
7285	-	R. Warsaw	Warsaw, Poland	1530
7295		Trans World R.	Monte Carlo, Monaco	
	vud	All India R.	New Delhi, India	1845
7305	-	R. Budapest	Budapest, Hunga	200
7306	-	Rozglosnia	Warsaw, Poland	1130
7320	-	BBC	London, Englond	1830
7325		BBC	London, England	2115
7345		R. Prague	Prague, Czech.	0100
7504		R. Peking	Peking, China	1500
8237		R. Peking	Peking, China	1500
82.45		R. Peking	Peking, China	0100
9009		Kol Zion	Tel Aviv, Israel	1835
9250	-	R. Alma Ato	Alma Ato, USSR	0410
9360		R. Nacional	Madrid, Spain	2020
9380	-	R. Almo Ata	Alma ${ }^{\text {A }}$	a
9457	-	R. Peking	Peking, China	0300

3I-Meter Band- $9500-9775 \mathrm{kHz}$

05	-	R. Prague R. Japan	Prague, Czech. Tokyo, Japan	$\begin{aligned} & 0100 \\ & 0600 \end{aligned}$
9508	-	R. Omdurman	Omdurman, Sudan	0420
9510	-	BBC	London, Enjland	1315
9515	TAT	R. Ankara	Ankara, Turkey	1530
9525	-	R. South Africa	Paradys, S. Africa	2330
$\begin{aligned} & 9535 \\ & 9540 \end{aligned}$	CR6RZ	R. Angols	Luanda, Angola	1715
	ETLF	R. Voice of Gospel	Addis Ábabo, Ethiopis	0400
9550	LLD	R. Norway	Oslo, Norway	0300
		R. Moscow	Moscow, USSR	1230
9535	OIX2	Finnish BC	Helsinki, Finland	1600
		Syrian BC	Damascus, Syria	1400
	YSS	R. Nacional	San Salvador. El Salvador	0200
9560	-	R. Tanzania	Dar es Salaam,	
9570				
	ETLF	R. Voice of Gospel	Addis Abobd. Ethiopia	1715
	-	R. Australia	Melbourne. Australia	0730
9580	-	R. Erevan	Erevan, Armenia, USSR	0800
9585	YSV	V. del Comercio	Santa Ana, El	
				1335
9590	-	R. Erevan	Erevan, Armenia, USSR	0800
		Trans World R.	Bonaire, Neth. Antilles	0130
9595	JOZ3	Okiki no Houso	Tokyo, Japan	0817
	ZYN29	R. Cultura	Bahia, Brazil	0200
9600		V. America Relay	Monrovia, Liberia	0600
	CE960	R. Pres. Balmaceda	Santiago, Chile	231

HHz_{2}	Call	Nome	Location	GMT
9610	$\begin{aligned} & \text { LLG } \\ & \text { VLX9 } \end{aligned}$	R. Norway R. Austrolio	Oslo, Norway Melbourne.	2300
	ORU4	Y Eriendship	Australio	1100 2200
$\begin{aligned} & 9615 \\ & 9620 \end{aligned}$		R. New Zealand	Wellington, N.Z.	2600
		VTVN	Saigon, S. Vietnam	0800
	CXAb	S.O.D.R.E.	Montevideo.	0200
9640	HLK5	V. Free Kores	Seoul, 'S. Korea	30
		R. Habano	Hovana, Cubo	00
	ETLF	R. Voice Gospel	Addis Abobo, Ethiopio	0330
$\begin{aligned} & 9667 \\ & 9675 \\ & 9685 \\ & 9670 \end{aligned}$	-	R. Ceylon	Colombo, Ceylon	30
	-	R. Worsow	Warsow, Pola	1530
		Vatican R.	Vatican City	2200
	vud	All Indis R.	New Delhi, Ind	1945
	LRA32	R. Nacional	Buenos Aires, Argentina	\%
97009705	-	R. Sofia	Sofio, Bulgaria	0000
		R. Sweden	Stockholm, Sweden	00
	ETLF	R. Voice Gospel	Addis Absbo. Ethiopio	1815
9710	-	R. Molaysio	Kuala Lumpur,	1300
	-	R.	Kiev, USSR	0030
	-	Mouritius BC	Forest Side,	
9720	-	South Africa	Paradys S. ${ }^{\text {Matiol }}$	2100
		Sowt al lslom	Riyadh.'S	
			Arabio	2200
9740	WNYW	R. New York Worlalwide	New York, N.Y.	2305
	LRSI	R. Splendid	8uenos Aires,	
9745	BEC62	Air force	Taipei, Formosa	150 1100
	TAP	R. Ankara	Ankara, Turkey	1930
	HCJB	V. of Andes	Quito, Ecuador	0230
9760	-	R. Hanoi	Hanoi, N. Vietnam	+1300
9765	-	R. South Africo	Paradys, 5 . Africa	2330
9810		R. Kiev	Kiev, USSR	0030
9833	Vuo	R. Budapest	Budapest, Hungary	ry 2200
9915	vUD	All Indio R.	New Delhi, Indio	2215
10530		R. Almo Ato	Almo Ato. USSR	0410
10865		R. Peking	Peking. Chino	0100
11440	-	R. Peking	Peking, Chino	2300
11610		R. Peking	Peking, China	2300
11672		R. Pakistan	Karachi, Pakiston	1500
11685	CR6RR	R. Dismang	Lusako, Angols	1900

25-Meter Band-II700-II975 kHz				
11710	-	R. Australia	Melbourne. Australia	0730
	LRA35	R. Nacional	Suenos Aires, Argentina	00
11720		R. Canada	Montreal, P.Q.	1745
	PRL8	R. Nacional	8rasalia, 8raz.	2130
11730		R. Nederlond	Hilversum, Netherlonds	0
1173511735	-	R. Iran	Tehran, Iran	2000
		R. Habana	Hovono, Cubo	0730 0500
11740	vud	\checkmark A. America Relay	Monrovia, Liberia New Delhi, India	0500 1945
117		BBC Relay	Moloysio	1145
	-	R. Habana	Havano, Cubo	0100
11765		R. Sweden	Stockhoim, Sweden	230
11770	ETLF	R. Voice Gospel	Addis Ababo, Ethiopio	0
		Vatican R.	Vatican City	0110
11780	-	BBC	London, Englond	1315 1930
	ZL3	R. Moscow R. New Zealand	Moscow, W ,	0545
	LRY2	R. Belgrano	Buenos Aires.	
11785	OE152	Austrion R.	Argentina	2000 1300
11805	O1x8	Finnish BC	Helsinki, Finland	1600
1181511820		R. Japan	Tokyo, Jopan	2200
	-	R. Tahiti	Papeete, Tahiti	30
		Trans World R.	Bonaire, Neth Antilles	205
$\begin{aligned} & 11825 \\ & 11835 \end{aligned}$	-	R. Tahiti	Papeete, Tohiti	0430
		R.TV Algerienne	Algiers, Alyeria	1330
	4VEJ	V. Evongelique	Cap Haitien, Haiti	1800
11850	ETLF	R. V. Gospel	Addis Ababo.	1700
	LLK	R. Norway	Oslo, Norway	2300
		R. Moscow	Moscow, USSR	1230
11875	-	R. Pokiston	Karachi, Pakiston	1125
	ZYN32	R. Society Bahia	Solvador, Brazil	0100
11890	-	R. Berlin Int'I.	Berlin, E. Germany	0100

kHz	Call	Name	Location	GMT
	ETLF	RAI	Rome, Italy	2230
	EILF		Adishorio.	0400
11895	DMQ।	Deutsche Welle	Cologne, W. Germany	0500
$\begin{aligned} & 11900 \\ & 11905 \end{aligned}$	-	R. South Africo	Paradys, S. Africa	2330 130
	Yud	BBC Relay	Nicosio, Cyprus	1130 222
11910	VUD	All india R.	New Delhi, ndio	1000
	HSK9	R. Thailond	Bangkok, Thailand	- 0415
$\begin{aligned} & 11915 \\ & 11925 \end{aligned}$	HCJ8	V . of Andes	Quito, Écuador	0230
	ETLF	R. Voice Gospel	Addis Ababo, Ethiopio	0350
	ZYR78	R. Bondeirontes	Sao Paulo, Brazil	2110
	ELWA	R. Village	Monrovia, Liberis	0500
		Sowt al tiam	Riyadh, Saudi Arabia	2200
11970	WNYW	R. New	New York, N.Y.	2305
	EIWA	R Village	Monrovio Liberia	- 0500
11990		R. Proque	Prague, C'zech.	0100
14345	二	Hellenic BC	Athens, Greece	1830
14520	-	Korean Central BC	pyongyong. N. Korea	0100

19-Meter Band-15100-15450 kHz

15100	-	RH de Mexico	Mexico (Clandestine)	$\begin{aligned} & 2300 \\ & 2130 \end{aligned}$
		R. Euzkadi	Moscow, USSR	1430
$\begin{aligned} & 15110 \\ & 15115 \end{aligned}$	-	R. Mree Europe	Munich, Germany	1300
	HCJB	V. of Andes	Quito, Ecuador	0230
15125	HLK41	V. Free Korea	Seoul', S. Kored	0630
	BED60	V. Free China	Taipei, Formoso	1715
15145		R. Free Europe	Munich, Germony	1715
15148	CEI5I5	Corp. Chileno 8C	Santiago, Chile	0100
	tau	R. Ankaro	Ankoro, Turkey	0420
15165	OZF7	V. Denmark	Copenhogen, Denmark	1330
1517015175	-	Hashemite BC	Amman, Jordan	2300
	LLM	R. Norway	Oslo, Norway	150 C
15185	OIX4	Finnish BC	Helsinki, Finland	1600
	ETLF	R. Voice Gospel	Addis Ababa. Ethiopio	1500
1519515205	-	R. Jopan	Tokyo, Jopan	0600
		R. Ceylon	Colombo, Ceylon	0100
15210	ETLF	R. Voice Gospel	Addis Abobo, Ethiopia	1600
152.2	-	R. Austrolio	Melbourne,	
			Australia	2245
15230	-TLF	R. Ceylon	Colombo, Ceylon	0130
	ETLF	R. Voice of Gospel	Addis Ababa. Ethiopia	1830
15235	-	BBC	London, England	1315
	-	R, Jopan	Tokyo, Japan	0830
15245	-	Trans World R.	Bonaire, Neth.	
			Antilles ${ }^{\text {a }}$ Berlin E Germany	2100 1435
$\begin{aligned} & 15255 \\ & 15285 \end{aligned}$	-	R. 8 erlin $\mid n t^{+1}$.	Berlin, E. Germany Progue, Czech.	1435 0330
	-	R. Prague Ghana BC	Progue, Czech. Accra, Ghano	1900 030
15295	-	R. Club Mozambique	Loupenco Marques. Mozamb.	1630
15315	ETLF	R. Voice Gospel	Addis Absbo. Ethiopia	1345
1532015340	-	R. Canada	Montreal, P.Q.	1745
	-	R. Habana	Habsna, Cubs	2200
15350	-	BBC Relay	Ascension 1.	1745
15370	ZYC9	R. Tupi	Rio de Janeiro. Brazil	2030
15400	ETLF	R. Voice Gospel	Addis Abobo,	
15410	ETLF	R. Voice Gospel	Addis Ababo,	
			Ethiopia	1300
$\begin{aligned} & 15415 \\ & 15425 \end{aligned}$	ZYR206	R. Club Ribeirso	Preto, Brazil	0045
	PCJ	R. Nederland	Hilversum, Netherlards	1930
15440	WNYW	R. New York	New York, N.Y.	2305
$\begin{aligned} & 17680 \\ & 17697 \end{aligned}$		R. Pekin	Peking, China	0000
	-	R. Berlin Int'l.	Berlin, E. Germany	1600

16 Meter Band- 17700 to $17900 \mathrm{Kc} / \mathrm{s}$

17705	-	V. America Relay	Honolulu, Hawaii	2223
17730	WNYW	R. New York	New York, N.Y.	1305
		Worldwide		
17795	-	R. Budapest	dopest, Hung	930
		(Com	nued on pag	

 tisers in this issue. Consult their ads for additional information and specifications. LIBRARY

CB-BUSINESS RADIO SHORTWAVE RADIO

t93. Hearh Co. has a new 23 -channel all-transistor 5 -watt CB rig at the lowest cost on the market, plus a full line of CB gear. See their new 10 band AM/FM/Shortwave portable and line of shortwave radios.
+101. If it's a CB product, chances are International Crystal has it listed in their colorful catalog. Whether kit or wired, accessory or test gear, this CB oriented company can be relied on to fill the bill.
48. Hy-Gain's new CB antenna cata\log is packed full of useful information and product data that every CB'er should know. Get a copy.
107. Get with the mobile set with Tram's XL'100. The new Titan CB base station, another Tram great, is worth knowing about.
111. Get the scoop on VersaTronics' Versa-Tenna with instant magnetic mounting. Antenna models available for CB'ers, hams and mobile units from 27 MHz to 1000 MHz .
49. Want to see the latest in communication receivers? National Radio Co. puts out a line of mighty fine ones and their catalog will tell you all about them!
45. Catering to 2 -way radio buffs for 30 years, World Radio Laboratories has a new free catalog which includes the latest CB transceivers, etc. Quarterly fliers chock-full of bargains are also available.
50. Make your connection with Amphenol-tune in to the latest on CB product news with specs and pics on new gear. Keep informed on Amphenol's new products.
100. You can get increased CB range and clarity using the "Cobra" transceiver with speech compressor-receiver sensitivity is excellent. Catalog sheet will be mailed by B\&K Division of Dynascan Corporation.
54. A catalog for CB'ers, hams and experimenters, with outstanding valves. Terrific buys on Grove Electronlcs' antennas. mikes and accessories.
96. If a rugged low-cost business/ industrial two-way radio is what you've been looking fur, be sure to send for the brochure on E. F. Johnson Co.'s brand new Messenger " 202 ."
102. Sentry M/g. Co. has some interesting poop sheets on speech clippers, converters, talk power kits and the like for interested CB'ers, hams and SWL'ers, too.
103. Squires-Sanders would like you to know about their CB transceivers, the " 23 'er" and the new "SSSS." Also, CB accessories that add versatility to their 5-watters.

ELECTRONIC PRODUCTS

66. Try instant lettering to mark control panels and component parts. Datak's booklets and sample show this easy dry transfer method.
67. Get the facts on Mercury's line of test equipment kits-designed to make troubleshooting easier, faster and more profitable.
68. "Get the most measurement value per dollar," says Electronics Measurements Corp. Send for their catalog and find out how!
69. How about installing a transistorized electronic ignition system in your current car? AEC Laboratories will mail their brochure giving you specifications, schematics.
70. Seco offers a line of specialized and standard test equipment that's ideal for the home experimenter and pro. Get specs and prices today.

HI-FI/AUDIO

126. Always a leader, H. H. Scott introduces a new concept in stereo console catalogs. "At Home With Stereo," offers decorating ideas, a complete explanation of the more technical aspects of stereo consoles. 85. Need a tuner? Preamp? Amp? Tape deck? Then inspect Dyna for kits or wired units. It's worthwhile looking at test reports Dyna sends your way.
127. Get the latest facts on sound columns. American Geloso Electronics Inc. offers a ten-page booklet giving the hows and whys plus method of installation and arrangement of sound columns.
128. A name well-known in audio circles is Acoustic Research. Here's its booklet on the famous AR speakers and the new AR turntable.
129. Discover how Cueing Control, anti-scating and other Garrard features in the Lab 80 offer tops in audio listening. 32 -page Garrard Comparator Guide will make you a wiser buyer-get it.
130. Build your own bass reflex enclosures from fool-proof plans offered by Electro-Voice. At the same time get the specs on $E V^{\prime}$ s solid-state hi-fi line-a new pace setter for the audio industry.
131. Empire Sclentific's new 8-page, full color catalog is now available to our readers. Don't miss the sparkling decorating-with-sound ideas.
132. Need a hi-fi or PA mike? Universtiy Sound has an interesting microphone booklet audio fans should read before making a purchase.
133. An assortment of high fidelity components and cabinets are described in the Sherwood brochure. The cabinets can almost be designed to your requirements, as they use modules.
134. Confused about stereo? Want to beat the high cost of hi-fi without compromising on the results? Then you need the new 24 -page catalog by Jensen Manufacturing.
135. Interested in learning about amplifier specifications as well as what's available in kit and wired form from Acoustech? Then get your copy of Acoustech's 8-page colorful brochure.
136. You can't pick the tape recorder you need without a program-and Sony Superscope has one. Full color 16 -page booklet is as good as your dealer's showcase. Includes accessories.

TAPE RECORDERS AND TAPE

113. Scotch is the product and it's made by Minnesota Mining and Mfg. Co. (3M). Get a packet full of facts and tape data from $3 M$ and learn all about your tape recorder and tho. tape it needs.
114. All the facts about Concord Electronics Corp. tape recorders are yours for the asking in a free booklet. Portable, battery operated to fourtrack, fully transistorized stereos cover every recording need.
115. "Everybody's Tape Recording Handbook" is the title of a booklet that Sarkes-Tarzian will send you. It's 24-pages jam-packed with info for the home recording enthusiast. Includes a valuable table of recording times for various tapes.
116. Become the first to learn about Norelco's complete Carry-Corder 150 portable tape recorder outfit. Fourcolor booklet describes this new car-tridge-tape unit.
117. If you are a serious tape audiophile, you will be interested in the new Viking of Minneapolis line-they carry both reel and cartridge recorders you should know about.
118. Sound begins and ends with a Uher tape recorder. Write for this new 20 page catalog showing the entire line of Uher recorders and accessories. How to synchronize your slide projector, execute sound on sound, and many other exclusive features.

HI-FI ACCESSORIES

112. Telex would like you to know about their improved Serenata Head-set-and their entire line of quality stereo headsets.
113. A 12-page catalog describing the audio accessories that make hi-fil living a bit easier is yours from Switchcraft, Inc. The cables, mike mixers. and junctions are essentials!
114. Swinging to hi-fi stereo headsets? Then get your copy of Superex Electronics' 16 -page catalog featuring large selection of quality headsets.
115. You can't bear FM stereo unless your FM antenna can pull 'em in. Learn more and discover what's availbble from Finco's 6-pager "Third Dimensional Sound."

KITS

t42. Here's a colorful 108-page catalog containing a wide assortment of electronic kits. You'll find something for any interest, any budget. And Heath Co. will happily send you a copy.
*44. EICO's new 48-page 2 -color pocket-size short form catalog is just off the press. Over 250 products: Ham radio, CB, hi-fi-in kit and wired form-are illustrated. Also, discover E/CO's new experimenter kit line.

AMATEUR RADIO

46. A long-time builder of ham equipment, Hallicraffers will send you lots of info on the ham, CB and commercial radio-equipment.

SCHOOLS AND EDUCATIONAL

*57. National Radio Institure, a pioneer in home-study technical training, has a new book describing your opportunities in all branches of electronics. Unique training methods make learning as close to being fun as any school can make it.
$\star 59$. For a complete rundown on curriculum, lesson outlines. and full details from a leading electronic school, ask for this brochure from the Indiana Home Study Institute.
61. ICS (International Correspondence Schools) offers 236 courses including many in the fields of radio, TV, and electronics. Send for freo booklet "It's Your Future."
$\star 74$. How to get an F.C.C. license, plus a description of the complete electronic courses offered by Cleveland Institute of Electronics are in their free catalog.
105. Get the low-down on the latest in educational electronic kits from Trans-Tek. Build light dimmers, amplifiers, metronomes, and many more. Trans-Tek helps you to learn while building.

TOOLS

\star 78. Learn about Xcelise's line of pliers and snips, specialized for radio TV and electronic work. Xcelite's hand tools offer many advantages worth looking into. Bulletin N464 and N664.

TELEVISION

\star 70. The Hearh Co. now has a $19^{\prime \prime}$ color TV to complement their 21" and $25^{\prime \prime}$ models. A new B\&W portable model will be a hot seller for the mobile set. Get the facts today!
72. Get your 1967 catalog of Cistin's TV, radio, and hi-fi service books. Bonus-TV tube substitution guide and trouble-chaser chart is yours for the asking.
29. Install your own TV or FM an tenna! Jefferson-King's exclusive free booklet reveals secrets of installation, orientation; how to get TV-FM transmission data
97. Interesting, helpful brochures describing the TV antenna discovery of the decade-the \log periodic antenna for UHF and UHF-TV, and FM stereo. From JFD Electronics Corporation.

ELECTRONIC PARTS

* 1. Allied's catalog is so widely used as a reference book, that it's regarded as a standard by people in the electronics industry. Don't you have the latest Allied Radio catalog? The surprising thing is that it's free!
\star 2. The new 1967 Edition of Lafayerre's catalog features sections on stereo hi-fi, CB, ham gear, test equipment, cameras, optics, tools and much more. Get your copy today.
*3. Bargains galore! Parts, tools, test equipment. radios and many more specials at ultra-low prices. Progres sive Edu-Kits will send latest catalog.
*4. Olson's catalog is a multicolored newspaper that's packed with more bargains than a phone book has names. Don't believe us? Get a copy.

Ł23. No electronics bargain hunter should be caught without the 1967 copy of Radio Shack's catalog. Some equipment and kit offers are so low they look like misprints. Buying is believing.
*5. Edmund Scientific's new cataog contains over 4000 products that embrace many interests and fields. It's the Buyers' Guide for Science Fair fans.
*106. With 70 million TV's and 240 million radios somebody somewhere will need a vacuum tube replacement at the rate of one a second! Get Universal Tube Co.'s Troubleshooting Chart and facts on their \$1 flat rate per tube.
*7. Whether you buy surplus or new, you will be interested in Fair Radio Sales Co.'s latest catalogchuck full of surplus buys for every experimenter.
*8. Want a colorful catalog of goodies? John Meshna, Jr. has ono that covers everything from assemblies to zener diodes. Listed are government surplus radio, radar, parts etc. All at unbelievable prices.
*6. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest eight-page flyer listing the latest in mercliandise available, in cluding a giant $\$ 1$ special sale.
10. Burstein-Applebee offers a new giant catalog containing 100's of big pages crammed with savings including hundreds of bargains on hi-fi kits, power tools, tubes, and parta.
11. Now available from EDI (Elecironic Disfributors, Inc.) a catalog containing hundreds of electronic items. $E D 1$ will be happy to place you on their mailing list.
12. VHF listeners will want the latest catalog from Kuhn Electronics. All types and forms of complete receivers and converters.

Heath AD-16 Recorder

Continued from page 70
sustained 400 Hz and 15 kHz tones for both azimuth and bias adjustments, using the built-in VU meters as indicators. For those who prefer it, an instrument alignment procedure is described, although it is neither easier nor better than that with the test tape.

How It Performed. The actual frequency response of the AD-16 is shown in Figs. 1 and 2. Although the response "wavers," it is well within Heath's specs which are given in the table. (The "waver," by the way, is normal with professional recorders that don't attempt to get a "ruler flat" frequency response by excess equalization at the expense of substantially higher high-frequency distortion.)

The 1 kHz THD (total harmonic distortion) was right on the button of Heath's claims. In fact, a record input level that exceeded 0 VU did not noticeably increase the reference distortion of 1.5% THD, even
with the pointer full into the "red region" at +3 VU . The noise level was a shade poorer than Heath's claims-at $71 / 2$ ips it measured -49 db on the right channel and -45 db on the left channel (referenced to 3% THD).

The AD-16's price of $\$ 399.50$ represents only the recorder; the walnut base is an optional extra at $\$ 19.95$. For additional information write to Dept. EB, Heath Co., Benton Harbor, Mich. 49023.

right through the case. . . . If desired, melt a hole opposite the adjusting screw of C5-so you can change frequency without removing the transmitter from the case.

Checkout. Insert the battery into the clips -get the polarity right-close the case, place an FM receiver near the transmitter, and place the mike near the receiver's speaker. As you tune the receiver you can't miss the transmitter's frequency, the feedback will be unbearable. To change the transmitter's frequency, adjust C5 until there is no interference from strong FM-broadcast stations.

Protecting yourself. To use the Tie-Spy, clip the mike to your tie, place the transmitter in your trouser's side pocket, and run the antenna around your waist under your belt or under the back of your shirt, or wherever you prefer. The effective transmitter range will be about 25 to 50 feet. Don't try to speak directly into the mike as the gain is very high and the modulation will severely "pop"-the gain is designed to pick up voices from one to three feet. Naturally, the better the mike the better the reproduction.

A Note of Warning. The transmitter
must ojerate between 88 and 108 MHz (mc) and it must not interfere with a commercial broadcast signal. And the transmitter must be certified by an electronics technician that it has no spurious emissions and conforms to FCC requirements. For more details concerning wireless-mike FM transmitters we suggest you write to the FCC, Washington, D.C. 20554 and request Bulletins 11 and 12 concerning FCC rules pertaining to license-free, low-power transmitters.

Tape Sings

Continued from page 92
another story. Played through their own speakers most cartridge systems sound like table-model FM radios. Bass is not really adequate by audiophile standards, and treble has been boosted to provide a slightly unnatural sound. Played through a component system, Fidelipac, Lear, and Norelco cartridges all sound somewhat better-though none is the equal of a good $71 / 2$-ips reel-toreel tape.

The best sound comes from Fidelipac (we sampled some of International Tape Cartridge Corp.'s Command titles), which provides generally good and full bass response through a big speaker system. Mid-range is accurately reproduced, as is treble. We found only a slight mellowing of the upper ranges, compared with a disc copy of the same music. The Lear-Jet system produces a similar frequency response (on the basis of RCA Victor recordings by Morton Gould, the Boston Pops, and Peter Nero), but there is a definite increase in tape hiss and a slight accentuation of treble response compared to Fidelipac.

This table-model player also accepts Norelco cassette. Lid exposes speaker grille.

Norelco's $11 / \mathrm{b}-\mathrm{ips}$ tape has slightly less audible tape hiss than Lear-Jet, but a slightly less natural treble sound as well. At the same time, Norelco's bass tones are not as clear or crisp as Fidelipac's (tests were made with cartridges recorded from Command discs).

Wow and flutter, however, which used to bedevil reel-to-reel slow-speed recordings, are inaudible on all these systems. And while none of these systems offers a hi-fi alternative to a good component disc- or tape-reproducing system, one significant fact remains. For the truth of the matter is that all can produce excellent results on the road.

Personal Hi-Fi
 Continued from page 54

J2 are mounted directly on one metal panel, and the stereo headphone jack (J3) is mounted directly on the other metal panelno insulating washers are necessary. Resistors R1 and R2, and transistors Q1 and Q2, are all mounted by their own leads, and no spaghetti (insulating tubing) is needed if you keep all leads well apart. When soldering the transistor leads, use a pair of longnose pliers as a heat sink.

How It Works. The PS-15 low-voltage DC source feeds a current through the piezoresistive elements in the phono cartridge. As the stylus rides in the stereo record grooves, the piezoresistive elements are flexed and stretched and act as rapidly varying resistances. The varying currents from the cartridge are given one stage of transistor AF amplification in the PS-15 unit.

The output from the PS-15 is fed into the input of our little headphone driver and given another stage of transistor AF amplification to drive the stereo headphones. The two 2.2 K (2200 ohms) resistors (R1, R2) provide base biás for Q1 and Q2; you might experiment with other values for best results with your particular transistors.

The amplifier is turned off simply by pulling the headphone plug out of the jack.

Photo shows all necessary dimensions for duplicating author's unit. If you prefer, amplifier can be mounted in small Minibox.

The Body's Ills

Continued from page 41
ulus blocks pain stimuli coming from other parts of the body and prevents their traveling on to the brain. Still experimental, it promises to ease suffering now relieved only by narcotics or dangerous operations.

Another remedial operation that can be ruled out is the one often necessitated by accidental swallowing of a ferrous object. General Electric engineers have come up with a gadget that has already removed a padlock, a coffee-can key, coins, pins, dental burrs, hypodermic needles, and metal toys from innocent human tummies.

About 30 in . long and $1 / 4-\mathrm{in}$. in diameter, the new wizard consists of a stainless steel cable in a plastic tube and ends with an iron tip. When the magnet at the end of the control cable is slid forward until it touches the iron tip, the tip magnetizes. When the permanent magnet is retracted into a magnetic shield, the tip loses its magnetism.

An important breakthrough, the new instrument can retrieve foreign objects in a matter of two to three minutes. No anesthesia is needed, and a general practitioner requires the help of only a fluoroscope.

"Pulling Power Is Amazing"

Classified Ads 554 per word, each insertion, minimum 10 wards, payable in odvance. To be included in the next available issue of RADIO-TV EXPERIMENTER, copy must be in our Now York Office by February 10th. Address orders to C. D. Wilson, Manager, Classified Advertising, RADIO-TV EXPERIMENTER, 505 Park Ave., New York, N. Y. 10022.

ADDITIONAL INCOME

MAKE Your Classified Ad Pay. Get How To Write a Ciassifled Ad That Pulls.. Includes certificate worth $\$ 2.00$ towards classiffed ad in S \& M. Send 81.00 to C. D. Wilson, Sclence \& Mechanics. 505 Park Ave.. New York. N. Y. 10022.

AUTO PARTS \& ACCESSORIES

CAR REPAIR: Dedicated to mechantcally minded readers. Send $\$ 1.00$ includes postage \& handing) to Car Repair 305 Park Ave., New York, New York 10022.

BOATS, MOTORS MARINE SUPPLIES
Full size. cut-to-shape boat patterns, blueprints. Send $60 t$ for big New lllustrated "Build a Boat" catalog Includes Fishing Boats, Garvies, Cruisers. Catamarans. Houseboats-Outboards. Inboards. Sallboats- $71 / 2$ to 38^{\prime}. "How to Bulld a Boat" booklet $\$ 2.50$. Cleveland Boat Blueprint Co., Box 18250 . Cleveland. Ohio.

BOAT KIts. Save money-assemble yourself. Factory molded Aberglass or pre-assembled plywood. 12' to 32 ' Crulsers, Runabouts, Houseboats, Sall Boats. Big Line accessories, motors. trallers. Easy terms. Free catalog. Luger, Dept. UC-67, 9200 Bloomington Freeway, Bloomington. Minn. 55435.

CANOES Kayacks Partially Assembled Kits $\$ 20.00$ Up. Free Literature. 424 W Cedar, Hillsboro, Oregon 97123 . Cristy Jan Canoes.

BOATING Journal is the best! Don't be Without this magazine. Order now. 84.50 for one year. Baating Journal. 505 Park Ave., New York, N. Y. 10022.

BOOKS \& PERIODICALS

1000 ELECTRONIC Books Avallable By Mall. Free Catalog. Books, Box 796-C. Montreal, Canada.

CATALOG of all Science \& Mechanics Craftprints. Send 254 to cover postage and handling to Craitprint Div., Sclence \& Mechanics, 505 Park Ave., New York New York 10022.

BUSINESS OPPORTUNITIES

1 MADE $\$ 40,000.00$ a year by Mallorder! Helped others make money! Start with \$10.00-Free Proof! Torrey, Box 318-T. Ypsilanti, Michigan, 48197.

[^3]
EDUCATION \& INSTRUCTION

BUILD Your Own Test Equipment and a Stereo AM-FM Radio. Practical Home Study Courses in Electronics in Theory, Practice and Servicing with complete kits and tools included in price. Write for free booklet with no obligation to: Inesco. Intercontinental Electronics School, Dept. $16 \mathrm{~B}, 9100$ St. Lawrence Blvd., Montreal 11 , Quebec. Canada

ENGINES, MOTORS, DYNAMOS
STEAM Boat \& Steam Automoblle Brochure. Send Only Two Dollars. Shaw, Box 21204, Concord, Callf. 94521 .

FOR INVENTORS

PATENT Searches-48 hour airmall service, $\$ 6.00$ including nearest patent copies. More than 200 registered patent attorneys have used my service. Free Invention protection Forms. Write Miss nvention protection Forms. whte Miss 176. Washingion, D. C. 20004.

FOR SALE-MISCELLANEOUS

1,000 GUMMED Address Labels, 504. Mart's, Box 454, Mackinaw. III. 61755.

PRACTICAL tips for home, garden and workshop, are in " 1001 How-To Ideas." A high value reference for all craftsmen. Send $\$ 1.00$ for your copy, Includes Postage, Send $\$ 1.00$ for your copy, includes Postage.
to 1001 How-To Ideas, 505 Park Ave., New York, N. Y. 10022.

HYPNOTISM

NEW concept teaches you selt-hypnosis quickly! Free Itterature. Smith-McKinley. Box 3038. San Bernardino, Callf.

INVENTIONS WANTED

WE elther sell your invention or pay cash bonus. Write for detalls. Unlversal cash bonus. Write for detalis.
Inventions, 298-5, Marion, Ohio.

LEATHERCRAFT

FREE "Do-1t-yourself" Leathercraft Manual. Tandy Leather Company, 1001 Foch, N58, Fort Worth, Texas.

MODELS \& MODEL SUPPLIES

SHIP Models. New Catalog 15t. Scientifc. Inc. 113 N Monroe, Newark. New Jersey 07i05.

MONEYMAKING OPPORTUNITIES

HOW To Make A Home Operated Mall Business Pay!! Detalls-Carpenter, 2907 Business Pay!! Detalls-Carpenter. ${ }^{2}$ West 39th Place, Chicago, Ill. 60632 .

START Profitable Business in spare time. Inveatigate many money-maling agency and franchise opportunities. Send $10 t$ for sample copy of Income Opportunitles Magazine, 505 Park Avenue, New York, 10022 . Dept. 8 .

OF INTEREST TO WOMEN

$\$ 100.00$ WEEKLY Possible Lacing Agsembling our products! Write: Cuties. Warsaw 66, Indiana 48580 .

PATENT SERVICE

PATENT Searches- 48 hour alrmall service, $\$ 6.00$. Including nearest patent coples. More than 200 registered patent attorneys have used my service. Free invention protection Forms. Write Mige Ann Hastings. Patent Searcher. P. O. Box 176, Washingion 4, D. C.

PERSONAL

BILL Problems? Poor credit no trouble. Not a loan company. Send for free application. Automatic Acceptance, 318DC Pocasset Ave., Providence, R. I.

PETS-DOGS, BIRDS, RABBITS, HAMSTERS, ETC.

MAKE blg money ralsing rabbits for us Information 254. Keeney Brothers, New Freedom, Penna.

RADIO E TELEVISION

McGEE Radio Company. Blg 1966-1967 Catalog Sent Free. America's Best Values. Hi-Fi, Amplifiers. Speakers. Electror.ic Parts. Send Name, Address and Zip Cod Number to McGee Radio Company, 180 McGee Street. Dept. RTV, Kansas City, Missouri 64108

FREE Catalog. Electronles parts, tubes. Wholesale. Thousands of tiems. Unbeat able prices. Arcturus Electronlcs-RT 502 22nd St., Union City. N. J. 07087.

POLICE-Alreraft-Emergency Calls on your broadcast radio wilth Tunaverter! Economical-Practicall Tune the Bandi Enonomica-Practical Tune the Band Dept. 3, Woodsboro, Texas 78693.

CANADIANS-Giant Electronics Cate logs. Hi-Fi. Shortwave, Ham, CB. Rush 1.00. ETCO. Dept. EX. Box 741, Montreal Canada.
C. B BUYERS' Guide-A new magazine for the buyers of Cltizen's Band Electrontc Equipment Includes a Test Report Section on 5-Watt C. B. Transceivers: How to Operate on C. B.; The Soclal Side of C.B.; FCC Regulations. Send $\$ 1.25-$ of C.B.: FCC Regulations. Send $1.20-$ 505 Park Ave. New York, N. Y, 10022

SCIENCE EXPERIMENTS

SCIENCE Experimenter-the magazine dedicated to the youth who is Interested in experimentation. construction and Science Fair entries, Send $\$ 1,00$, includet Postage, to Sclence Experimenter, 505 Park Ave. New York, N. Y. 10022.

SONGWRITERS

POEMS Wanted for musical setting and recording. Send poems. Free examination. Crown Music. 49-SC West 32, New Yort 1.

TREASURE FINDERS--PROSPECTING EQUIPMENT
"NEW" ©clentific Instrument detects buried gold, sllver, colns, treannres. $\$ 19.95$ up. Free catalog Relco-A30, Box 10583 .

DIAMONDS, Gold. Find Them. Pamphlet Free. 18788 Cajon, Ean Bernardino, phet Free. 18788
Callfornla 92407.

Tape-Slide Synchronizer

Continued from page 80

R1 and J2 are added to the PK-522 amplifier to make this simplification of operation possible. Volume control R1 is set to about its mid-range position for this setup.

Shock Hazard and Grounding. The yellow lead of the output transformer was grounded to the positive (+) battery terminal in the original PK-522 circuit. To completely eliminate shock hazard the printed-circuit foil was cut leaving the secondary ungrounded as shown at X in Fig. 2.

A separate transformer power supply (T2R2 and C3) provides DC for the amplifiereliminating possible shock hazards from this source. To prolong its life, R3 is used to reduce the light output of the pilot lamp. The value of C 3 must be at least 1000 mf as it holds the power supply voltage on the amplifier for good operation, after the AC supply to T2 has been cut off by the motordriven cam switch (S4) in the slide changer.

Construction Details. Placement of parts is not critical. And using subassemblies for the amplifier, SCR switch and the amplifier power supply makes for a neat and compact unit which should be easy to service if this should ever be necessary.

The photo of the under side of the chassis (Fig. 3) shows the location of parts. The PK-522 amplifier is shown fastened to the right side of the chassis box on $3 / 8$-inch stand-off insulators. These can easily be made from test-lead handles or banana-plug insulators.

The SCR-diode bridge switch (SCR1, Z1, D1, R2 and C4) is mounted on a phenolic panel and fastened to the left side of the cabinet with $1 / 2$-inch spacers. The power supply ($Z 2$ and R3) is mounted on another small phenolic panel which is then attached to the bottom side of the chassis box with $1 / 2$-inch spacers. T2 is mounted direct to the lower side of chassis as shown.

Fig. 4 is a photograph of the Tape-Slide Synchronizer and shows. in conjunction with Fig. 3, the location of the other components.

Cables. The two-wire power cable which connects the slide-changer unit to the TapeSlide Synchronizer has a 4 -contact plug number Jones P-304-CCT on one end which mates with the original Jones 4 -contact
socket S-304-AB on the slide changer. The other end of the power cable has a female Jones cable socket S-304-CCT which mates with a male chassis plug P-304-AB on the Tape-Slide Synchronizer.

The female Cinch-Jones chassis socket S -304-AB shown on the chassis is not essential unless the original remote pushbutton cable operation is desired.

The shielded wire connecting the synchronizer unit with the recorder has a miniature phone plug on one end and whatever type fittings needed (on the other end) to mate with the input and output of the particular recorder used.

Conclusion. The Tape-Slide Synchronizer can be used with any stereo-tape record/ playback unit and practically any remote-pushbutton-operated semiautomatic slide changer. Adequate gain is available from the 3-transistor amplifier to operate with the preamps of most stereo tape decks. Furthermore, if desired. a small crystal microphone can be plugged into the synchronizer's input for voice operation of the slide changer and simultaneous recording of the sync signal on the tape.

Since the Tape-Slide Synchronizer is all solid state there are no relays, contacts or moving parts to wear out. This unit has been in service for nearly a year and has required no service of any kind to date.

Perfect synchronization of commentary and slides is assured at all times because the sync pulse and commentary are recorded on a single 2 -track tape.

International Crystal C-1 2B

Continued from page 58

"wo-0-of," or "hello-o-o-o," the C-12B indicated somewhat in excess of 90% modulation. The actual scope value under these conditions was 100%.

Summing Up. The C-12B frequency meter, functioning as a frequency meter, precision signal generator, RF power output meter, and modulation meter, essentially performs all the tests required to insure a CB set is completely legal in its operation and that it is performing at optimum efficiency. We therefore recommend it as a must-have item for any shop doing CB servicing.

The C-12B is priced at $\$ 300.00$. Additional information is available from Dept. RF, International Crystal Mfg. Co., 18 N . Lee, Oklahoma City, Okla. 73102.

LAFAYETTE 1967 Catalog 670

Now BETTER THAN EVER Over 500 Pages
Featuring Everything in Electronics for - HOME • INDUSTRY • LABORATORY from the
"World's Hi-Fi \& Electronics Center"
Use Lafayette's Easy-Pay Budget Plan No Money Down... Up to 24 Months to Pay Satisfaction Guaranteed or Money Refunded STORE LOCATIONS

NEW YORX
 Brooklyn Jamaica Manhatlan Scarsdale Syosset

NEW JERSEY Newark Paramus Pialnfield
MASSACHUSETTS Boston Natlek $\begin{array}{lc}\text { Natick } & \text { PENNSYIVANIA } \\ \text { Saugus } & \text { Pittsburgh }\end{array}$

Mall the Coupon Today for Your FREE 1967 Lofayette Catalog 670

LAFAYETTE Radio ELECTRONICS
Dept. EXB-7
P.O. Box 10

Syosset, L.I., N.Y. 11791
Send me the Free 1967 Lafayette Catalog 670
Name
Address
City
\qquad
zip \qquad

Mail This Card Today for Your Frriend's

1967 Lafayette Catalog 670

Friend's
Name
Address
City
State
$2 i p$

Shop At The

"World's Hi-Fi \& Electronics Center" For Widest Selection, Low Prices

Sterea Hi-Fi - Citizens Band Ham Gear Tape Recorders Test Equipment - TV and Radio Tubes and Parts Cameras Auto Accessories - Musical Instruments Tools Books

Everything In Electronics For Home • Industry • Laboratory
Exclusively Yours af Lafayerte

New! Criterion Hi-Fi Bookshelf Speakers

No Money Down - Up to 24 Months to Pay

Do A Friend A Favor...

383H

Have a friend interested in hi-fi or electronics? Send us his name and address and we will send him his own personal copy of the 1967 Lafayette Catalog 670.

NOW 12 EASY, EXCITING WAYS TO LEARN ELECTRONICS, TV-RADIO WITH NRI

NRI has a training plan to fit your interest, your need, your education . . from Color TV Servicing to Electronics for Printers. Pick the field of your choice and mail postage-free card now.

TELEVISION-RADIO SERVICING
Learn to fix home entertainment equipment like radio, hi-fi and stereo sets, all kinds of TV sets. Training kits include choice of black-andwhite or color TV set you build. A profitable field full or part-time.
INDUSTRIAL-MILITARY ELECTRONICS
From basic principles to computers Comprehensive training teaches fun. damentals, then takes you into such modern-day miracles as servos, telemetry, multi-plexing, phase circuitry, others.
COMPLETE COMMUNICATIONS *
Teaches and provides actual practice in operation, service, maintenance of AM, FM, and TV broadcasting stations. Also covers marine, aviation, mobile radio, facsimile, microwave, radar.
FCC LICENSE *
Prepares you for First Class FCC Radiotelephone License exams. You begin with fundamentals, advance to required subjects covering equipment, procedures.

MATH FOR ELECTRONICS
A brief course for engineers and technicians who need a quick review of essentlal math used in industry. communications, government. Basic arithmetic review, short-cut formulas, modern digital number systems, much more.
BASIC ELECTRONICS
A concise course in Electronic terminology and components. A wealth of useful information to help you better understand the field. For anyone who wants a basic understanding of Radio.TV Electronics.

* NOTE: You must pass your FCC License exam (any Communications course) or NRI refunds in full the tuition you have paid.

ELECTRONICS FOR AUTOMÁTION
Not for beginners, but for men with some knowledge of Electronics who want an understanding of process control, ultrasonics, telemetering and remote control, electromechanical measurements, other subjects.
aviation communications *
Prepares you to install, maintain, service direction finders, ranges, markers, Loran, Shoran, Radar. landing systems. Earn your FCC License with Radar Endorsement.

MARINE COMMUNICATIONS **
Covers transmitters, direction finders. depth indicators. Radar, Sonar, other equipment on commercial ships, pleasure boats. Prepares for FCC License with Radar Endorsement.
MOBILE COMMUNICATIONS *
Learn to install and maintain mobile transmitters and receivers used by police and fire departments, public utilities, construction firms, taxis, etc. Prepares for FCC License.

ELECTRICAL APPLIANCE REPAIR
Prepares you quickly to repair all types of appliances, including air conditioning, refrigeration, small gasoline engines. An easy, practical course leading to profitable part-time or full-time business of your own.

ELECTRONICS FOR PRINTERS
Designed to teach operation and maintenance of Electronic equipment which controls the latest devices developed for the graphic arts industry. From basic principles to computer circuits. Approved by major manufacturers.

> EARN YOUR FCC LICENSE OR YOUR MONEY BACK FILL OUT
ANOSTAGE-FRLL
POR

BUSINESS REPLY MAIL no postage stamp necessary if mailed in the united states
postage will be paid by

NATIONAL RADIO INSTITUTE

 3939 Wisconsin AvenueWashingfon, D.C. 20016

ONY NRI Gives You your own COLOR KIT

Discover the Ease and Excitement of Learning TV-Radio, Electronics at Home with NRI

Begin now an exciting adventure. NRI-the home study school that pioneered learn-by-doing training kits is now first to bring you COLOR TV training equipment. Learn Color TV Servicing by building your own high-quality Color set. You get "on-thejob" experience as you train. Your family enjoys the thrills of vibrant color shows for years to come. And, thanks to NRI training, you can do your own servicing - no costly service contract.

Earn $\$ 4$ to $\$ 6$ an Hour Extra Spare Time

Color TV is booming. Set sales exceed $5,000,000$ a year now. 10 -million-color-set years are predicted soon. And 60% of color set owners also own black-and-white sets. TV Technicians are in demand now to serve this giant, money-making, growing market. NRI shows you how to cash in on Color TV: how
to earn $\$ 4$ to $\$ 6$ an hour extra in spare time while learning; how to be your own boss in a full-time Radio-TV Servicing business, or qualify quickly for jobs in the fascinating fields of broadcasting/communications, industrial electronics, automation and space projects.

Act Now to Move Ahead

NRI offers you a choice of 12 different training plans, designed for people with all kinds of interests, all levels of education. Courses are described briefly on the other side of this page. To find out how you can be a part of the Electronics Age, mail postage-free card for free NRI color catalog. Don't delay. Electronics and Color TV need you now. NATIONAL RADIO INSTITUTE, Electronics Div., Washington, D.C. 20016. No salesman will call.

\langle SEE OTHER SIDE

NATIONAL RADIO INSTITUTE, ELECTRONICS DIVISION WASHINGTON, D.C. 20016

5-027
Please send me your new color Catalog. I have checked the field(s) of most interest to me. (No obligation. No salesman will call.)

\square Television-Radio ServicingIndustrial Electronics
\square Complete Communications
\square FCC License
\square Math for Electronics
\square Basic Electronics
\square Electronics for Automation \square Aviation Communications \square Marlne Communications \square Mobile Communications \square Electrical Appliance Repair \square Electronics for Printers
\qquad

Address.

PICK Your FIELD and mail postage-free card for free color catalog

OVER 50 YEARS OF LEADERSHIP
in electronics training

[^0]: Box 03974M, Scranton, Penna. 18515
 (In Hawail: P.O. Box 418, Honolulu. In Cenads: I.C.S. Cenadian, Ltd. In other countries: I.C.S. World, Ltd.) W to SUCCEED," the opportunity booklet about the field I have indicated below, and a sample lesson. Newl Special Package for Women! Special training programs for industry

 Convenient Payment Plan

[^1]: PARTS LIST FOR AC AMMETER
 J1, J2-5-way binding posts; 1 red, 1 black (Lafoyette 99C6233 or equiv.)
 J3, J4—banana jack tio attoch ammeter to adopter-optional)
 MI—AC milliammeter (see text)
 R1, R2—wirewound shunt resistors (see text)
 S1-Selector switch (Mallory 1313L; Allied 56 A4253 or equiv.)
 1 -Chassis box, $5 \times 4 \times 3$-in. (Bud CU2 $105 A_{\text {; }}$ Allied 4207621 or equiv.)

 PARTS LIST FOR AMMETER ADAPTER
 FI-Fuse of proper rating for range in use (see texi)
 J5, J6-5-way binding posts; 1 red, 1 black (lafayette 99C6233 or equiv.)
 J7-Chassis-mount $A C$ receplacle (Amphenol 61-F; Allied 40 H 677 or equiv.)
 P1, P2—Banano plug to attach adapter to am-meter-optional)
 P3-Chassis-mount AC plug (Amphenol 61-M; Allied 40 H 675 or equiv.l
 1—Recessed steel shell for P3 (Amphenol 6161; Allied 40H086 or equiv.l
 1—Chassis box, $4 \times 2 \times 23 / 4$-in. (Bud CU2115A; Allied 4207631 or equiv.l
 Mise.-machine screws, nuts, wire, solder, phenolic board, wire, etc.

 Estimated cost: \$14.00
 Construction time: $\mathbf{2}$ hours

[^2]: t. Former head of Electronic Research Laboratory and Direclor of Product and Service LaLoratories, St. Joseph Lead Co.. Monaca. Pa. Now retsred

[^3]: FREE Book "'990 $\begin{gathered}\text { Successful } \\ \text { Known Butnesses." } \\ \text { Fascinating }\end{gathered}$ Work home! Plymouth $911-\mathrm{R}$. Brooklyn, N. Y. home!

 MONEYMAKING Mall-Order Opportunities, $\$ 200.00$ weekly possible. Litton, 33MC, Randallstown, Maryland.
 For Business Opportunities-read Sclence \& Mechanles. 12 issues $\$ 4.00$. Write Sclence \& Mechanics, 505 Park Ave.. New York. N. Y. 10022.

 ## EARTHWORMS

 BIG Money Raising Fishworms and Crickets. Free literature. Carter Farm-O. Crickets. Free literatu

